

Hydro-geological Site Assessment Proposed Student Focused Housing 409 Huron Street Toronto, Ontario

Prepared for
Ms. Newry Shao
The Impressions Group
306 Town Center Boulevard, Suite 101
Markham, Ontario
L3R 0Y6

Edward Wong & Associates Inc.

441 Esna Park Drive, Unit 19 Markham, Ontario Canada L3R 1H7 Telephone: (416) 903-4288 Ma002568c (rev.) May 8, 2019

Table of Contents

1. Introduction	1
2. Site Conditions 2.1 Site Locations and Descriptions	2
3. Geotechnical Investigation	4
3.1 Soil Sampling	4
3.2 Development of Monitoring Well and Groundwater Sampling	4
4. Subsurface Conditions	6
4.1 Subsoils	6
4.1.1 Topsoil	6
4.1.2 Pavement Strucrure	6
4.1.3 Fill	
4.1.4 Silty Sand	
4.1.5 Fine Sand	7
4.1.6 Silty Clay	
4.2 Groundwater Elevations	7
4.3 Slug Tests	8
4.4 Groundwater Quality	8
4.4.1 Comparison to MOE's Document entitled "Soil, Ground Water and	
Sediment Standards for Use under Part XV.1 of the Environmental Protection Act", dated April 2011	9
4.4.2 Comparison to City of Toronto Storm and Sanitary Sewer By Law Criteri	
4.4.3 Comparison to CSA A23.1 Table 3	9
4.5 Subsoil Quality	10
4.5.1 Assessment Criteria	10
4.5.2 Comparison to MOE's Document entitled "Soil, Ground Water and	
Sediment Standards for Use under Part XV.1 of the Environmental Protection Act", dated April 2011	
4.5.2.1 General and Inorganic Parameters	
4.5.2.2 Petroleum Hydrocarbons (F1 - F4 Fractions)	11
4.5.2.3 Benzene, Toluene, Ethyl-benzene and Benzene	11

4.5.2.4 Volatile Organic Compounds	11
4.5.3 Comments	12
5. Engineering Discussion and Recommendations	13
5.1 Short Terms Groundwater Control Requirements (Construction Phase	2
5.2 Long Term Groundwater Control Requiremests (Post-Construction P	hase)13
5.3 Assessemnt of Potential Impacts	13
5.3.1 Geotechnical Considerations	
5.3.2 Surface Water	
5.3.3 Local Wells	
5.3.4 Contamination Sources	14
6. General Comments	15
Appendices:	
Appendix A: Site Plan and Sections - Proposed Development	
Appendix B: Logs of Borehole	
Appendix C: Results of Grain Size Analysis and Hydrometer Tests	
Appendix D: Results of Slug Test	
Appendix E Certificates of Chemical Analysis	
Appendix F: Dewatering Flow Rate Calculations	
Drawings	
	D
Site Location Plan	_
Borehole and Section Location Plan	_
Section A-A	Drawing No. 3
Topographical Map	Drawing No. 4

1. Introduction

This report presents the results of a hydro-geological study carried out in the property located at 409 Huron Street in Toronto, Ontario.

The project involves the proposed design and construction of four (4) level student residence with associated surface paved driveway and parking area. The proposed student residence will have one (1) to two (2) levels of basement. The upper and lower basement floor slab will be set at approximately 1 m and 3.65 m below street grade on Huron Street. The footprint of the upper and lower basement floor slab covers an area of about 666 m². Site plan and sections of the proposed development is provided in Appendix A.

The Site is currently occupied in parts by a three (3) storey brick apartment, surface paved parking area and driveway. The on-site apartment building has a basement. The on-site brick apartment building will be demolished to accommodate the construction of the proposed student residence.

The hydro-geological site assessment was carried out in conjunction with the geotechnical investigation. Results of the geotechnical investigation are provided under separate cover.

The purpose of this hydro-geological study was to confirm whether or not groundwater will need to be pumped as part of the building design, to determine the elevations of the groundwater level, the quality and quantity of groundwater proposed to be discharged to a City sewer and, the proposed groundwater discharge method.

2. Site Conditions

2.1 Site Locations and Descriptions

The Site is located on the east side of Huron Street, approximately 54 m south of Bloor Street, in Toronto, Ontario. It is located in a mixed residential, commercial and institutional neighborhood.

The Site covers an area of about 1,090 m². The Site is currently occupied in parts by a three (3) storey brick apartment and surface paved parking area and driveway. The on-site apartment building has a basement. The on-site building covers an area of about 262 m².

2.2 Site Topography and Drainage

The Site and surrounding lands consist of an urban area of the City of Toronto. The Site is generally flat with an approximate ground surface at \pm El.114 m. There are no permanent water courses present on the Site. Storm water at the Site is expected to drain towards the catch basins located within the Site and on municipal roads adjacent to the Site.

2.3 Site Geology and Hydrogeology

The following topographic, geological and soil maps were reviewed:

- Topographical Map, published by Natural Resources Canada dated 2015.
- "Quaternary Geology of Ontario" Southern Sheet, Map 2556.
- "Bedrock Geology of Ontario" Southern Sheet, Map 2554.
- "Metropolitan Toronto Bedrock Elevation Bedrock Contour" Preliminary Map 102, dated 1961

The general area of the Site was developed for residential, commercial and institutional uses. Ground surfaces of the general area of the Site sloped down gently from north to south.

The Site is located within the physiographic region known as "Iroquois Plain" and the Lake Ontario Waterfront watershed.

The Site is not located in the wellhead protection area, Intake Protection zones, Municipal Surface Water Intakes and Significant Groundwater Recharge Areas (Approved and Updated Assessment Report, Toronto and Region Conservation Authority, dated July 24, 2015).

The Lake Ontario Waterfront watershed is made of a number of layers of successive glaciers over the thousand years: Lake Iroquois sand, Older Lake silt and clay, Older Lake silty clay till to silt till, Scarborough Formation sand (aquifer) and Georgian Bay Formation shale. The sand aquifer and shale bedrock is suited at least 75 m and 80 m below grade, respectively.

Edward Wong has completed a geotechnical investigation concurrently with this hydrogeological study. Three (3) boreholes were advanced to a depth of about 7.95 m below grade. All boreholes were completed with a 50 mm diameter monitoring well.

The subsoil profile, as revealed in the logs of borehole, consisted of a topsoil layer or pavement structure over a discontinuous fill stratum followed by native deposits of native deposits of silty sand, fine sand, silty sand till and silty clay.

Boreholes 1, 2 and 3 were dry, during drilling. Groundwater levels in Boreholes 2 and 3 were measured at a depth of about 4.78 m and 2.67 m below grade, thirty-one (31) days after drilling. Borehole 1 was dry, after completion of drilling.

3. Geotechnical Investigation

3.1 Soil Sampling

The fieldworks were carried out on December 7 and 8, 2018. Three (3) sampled boreholes (Boreholes 1, 2 and 3) were drilled to a depth of about 7.95 m below grade at the approximate locations shown on the attached Borehole Location Plan (Drawing No. 1).

The boreholes were advanced, using a truck-mounted drill rig equipped with continuous flight solid stem augers owned, supplied and operated by a specialist drilling contractor. The overburden soils were recovered using a conventional split spoon sampler in conjunction with standard penetration test (SPT). The fieldwork was supervised throughout by Edward Wong's geotechnical personnel who monitored the drilling and sampling operations and logged the borings.

Tests for the generation of methane gas and Total Organic Vapors were carried out in Boreholes 1, 2 and 3, using a portable combustible gas tester (RKI Eagle multi-gas detector).

The groundwater conditions in the open boreholes were closely monitored during and upon completion of drilling. Monitoring well, 50 mm in diameter, installed in Boreholes 1, 2 and 3 for subsequent groundwater level measurements and groundwater sampling and testing.

All recovered soil samples were transported to Edward Wong's laboratory for detailed visual examinations and soil classifications. Moisture content determinations were carried out on all recovered soil samples.

Soil and groundwater samples were submitted to Maxxam Analytics in Mississauga for chemical analysis. Results of the environmental soil and groundwater testing are discussed in Section 5 of the report.

Borehole locations were established in the field by Edward Wong & Associates Inc. Prior to the commencement of drilling, the borehole locations were cleared for underground utilities by a private locator retained by Edward Wong & Associates Inc. to minimize the potential of contacting them during drilling. Ground surface elevations at the borehole locations were interpolated from a Site Plan provided by Impression Group (the Client).

2.2 Development of Monitoring Well and Groundwater Sampling

Monitoring wells were installed in Boreholes 1, 2 and 3 to a depth of 7.95 m below grades. The monitoring wells were completed with a flush mount well cover. The monitoring well construction was shown in the relevant logs of borehole.

Development of the monitoring well and sampling of groundwater was carried out on December 17, 2018 (10 days after completion of drilling). Boreholes 1 and 2 were dry. Groundwater level was measured at a depth of 2.78 m below grade on December 10, 2018.

Prior to groundwater sampling, Borehole 3 was developed and purged of more than three (3) well volumes of water, using clean polyethylene bailers. No free product or sheen was detected on the surface of the groundwater in Borehole 3.

Groundwater samples were collected and stored in laboratory supplied bottles and jars. The bottles and jars were kept in a portable cooler during field storage and transportation to Maxxam Analytics in Mississauga for chemical analysis.

Results of the groundwater testing are provided in Section 4.4 of the report.

4. Sub-surface Conditions

The subsurface stratigraphy at the Site, as revealed in the logs of borehole, consisted of a topsoil layer or pavement structure over a discontinuous fill stratum followed by native deposits of silty sand, fine sand, silty sand till and silty clay.

3.1 Subsoil

A brief description of the soil profiles, in order of depth, are as follow.

3.1.1 Topsoil

Topsoil, about 75 mm thick, was encountered at the ground surface in Borehole 1 advanced in the landscaped area.

3.1.2 Pavement Structure

Pavement structure was encountered at the ground surface in Boreholes 2 and 3 drilled on the driveway and parking area. The pavement structure consisted of about 65 mm of asphaltic concrete over about 185 mm of sand and gravel granular base materials. The granular materials were very moist. Moisture contents were about 15 percent and 13 percent.

3.1.3 Fill

Fill was encountered below the pavement structure in Boreholes 2 and 3 and extended to a depth of about 1.5 mm and 0.75 m below grade, respectively. The fill materials consisted of silty sand. Brick fragments and topsoil were noted in the fill samples recovered from Borehole 2 and 3, respectively. SPT "N" values ranged from 3 blows per 300 mm penetration to 7 blows per 300 mm penetration. Based on the "N" value, the fill materials were judged to be loose to very loose. The fill was very moist. Moisture contents ranged from 13 percent to 17 percent.

3.1.4 Silty Sand

Silty sand was encountered below the topsoil in Borehole 1 and extended to a depth of 2.4 m below grade. Silty sand was also contacted below the fill in Borehole 2 and 3 at a depth of about 1.5 m and 0.75 m, respectively, and extended to a depth of about 3.0 m and 1.5 m, respectively. The relative density of the silty sand varied from very loose to compact. SPT "N" values ranged from 2 blows per 300 mm penetration to 20 blows per 300 mm penetration. Moisture contents ranged from 8 percent to 17 percent, indicating moist to very moist conditions.

3.1.5 Fine Sand

A localized fine sand layer was found below the silty sand at a depth of about 1.5 m below grade in Borehole 3 and extended to a depth of about 3 m. SPT "N" values were 18 blows per 300 mm penetration and 33 blows per 300 mm penetration. The relative density of the fine sand ranged from compact to dense. The fine sand was moist to wet. Moisture contents were 8 percent and 22 percent.

Grain size analysis and hydrometer test was carried out on one (1) selected silty sand sample. The test result is provided in Appendix B and summarized in Table 1 below.

Table 1: Result of Grain Size Analysis and Hydrometer Test - Fine Sand

Borehole No.	Depth	Composition (%) Gr, Sa, Si & Cl	Estimated Coefficient of Permeability (m/s)	Unified Soil Classification	Comments
3	1.5 - 1.95	0, 95.2, 4.8	*8.1 x 10 ⁻⁵	SP (poorly grade sand)	Medium Permeable

Note: Gr, Sa, Si, Cl - Gravel, Sand, Silt and Clay * based on Haze Formula, $k = 10^{-2} D_{10}^2 \text{ m/s}$

3.1.6 Silty Sand Till

Dense silty sand till was contacted below the silty clay at a depth of 6 m below grade in Borehole 1 and extended to a depth of about 7.5 m. SPT "N" value was 37 blows per 300 mm penetration. Un-confined compressive strength measured from the pocket penetrometer gave the values of un-drained shear strength greater than 225 kPa. Moisture content was 8 percent, indicating a moist condition.

Grain size analysis and hydrometer test was carried out on one (1) silty sand till sample. The test result is provided in Appendix B and summarized in Table 2 below.

Table 2: Result of Grain Size Analysis and Hydrometer Test - Silty Sand Till

Borehole No.	Depth	Composition (%) Gr, Sa, Si & Cl	Estimated Coefficient of Permeability (m/s)	Unified Soil Classification	Comments
1	6.0 - 6.45	6, 59.6, 28, 6.4	1 x 10 ⁻⁵	SC (sand-clay mixtures	Low Permeable

Note: Gr, Sa, Si, Cl - Gravel, Sand, Silt, Clay

3.1.7 Silty Clay

Silty clay was encountered below the silty sand at depths of about 2.4 m and 3 m below grade in Boreholes 1 and 2 and extended to depth of 6 m and 7.95 m, respectively. Silty clay was found below the fine sand at a depth of about 3 m below grade in Borehole 3 and extended to termination depth of 7.95 m. In Borehole 1, a lower silty clay layer was contacted at a depth of 7.5 m below grade and extended to termination depth of 7.95 m. SPT "N" values ranged from 25 blows per 300 mm penetration to 39 blows per 300 mm penetration. Un-confined compressive strength measured from the pocket penetrometer gave the values of un-drained shear strength from 175 kPa to greater than 225 kPa, corresponding to very stiff to hard consistency. Moisture contents ranged from 8 percent to 12 percent.

4.2 Groundwater Elevations

Groundwater conditions were assessed in the open boreholes during the course of the fieldwork. Monitoring well, 50 mm in diameter, was installed in Boreholes 1, 2 and 3 for subsequent groundwater level measurements and groundwater sampling and testing. Short term groundwater level measurements are shown in Table 3 below.

Borehole			Depth (Elevation (m))			
Location	Ground Surface Elevation (m)	During Drilling	Upon Completion of Drilling	Dec. 14, 2018 (7 days after completion of drilling)	Dec. 21, 2018 (14 days after completion of drilling)	January 10, 2109 (31 days after completion of Drilling)
1	114.7	Dry	Dry	Dry	Dry	Dry
2	114.6	Dry	Dry	Dry	Dry	4.78 (109.82)
3	114.37	Dry	2.25 (112.12)	1.8 (112.57)	2.78 (111.59)	2.76 (111.61)

Table 3. Groundwater Level Measurements

The measured groundwater levels in Boreholes 2 and 3 were originated from water perched in the sand layers overlying the silty clay deposit. The groundwater flow direction is to the west/southwest, based on Table 3 above.

The groundwater levels are expected to fluctuate on seasonal basis (± 1 m) and could be higher in spring or after prolonged period of rain.

4.3 Slug Test

On December 22, 2018, slug test was carried out in Borehole 3 to assess the hydraulic conductivity of the in-situ conductivity of the subsoil. Screen of the monitoring well was placed within the native silty clay deposit. Groundwater level in Borehole 3 was likely originated from water perched in the fine sand deposit overlying the silty clay. At the time of the slug test, groundwater level in Borehole 3 was measured at about 2.78 m below grade.

Water level readings and results of the slug test are provided in Appendix C of the report. The hydraulic conductivity of the native silt clay was found to be 6.82×10^{-7} m/min $(1.1 \times 10^{-8} \text{ m/sec.})$. Water level readings and results of slug test analysis are provided in Appendix C.

4.4 Groundwater Quality

Samples of groundwater were collected by Edward Wong for chemical analysis. Sample locations and analytical data are listed in Table 4 below. Certificates of Chemical Analyses are provided in Appendix D.

Table 4: Sample Locations and Analytical Data

Sample I.D.	Borehole Location and Depth	Matrix	Analytical Data
IOO971	ВН 3	Groundwater	Toronto Storm and Sanitary Sewer By Law, soluble Sulphate, General and Inorganic Parameters, PHC (F - F4 Fractions) and VOCs.

Notes: PHC - Petroleum Hydrocarbons; VOC's - Volatile Organic Compounds

4.4.1 Comparison to MOE's Document entitled "Soil, Ground Water and Sediment Standards for Use under Part XV.1 of the Environmental Protection Act", dated April 2011

The analytical concentrations of the tested groundwater sample complied with the applicable MOE Document Table 1 (Background Site Conditions) criteria for general and inorganic parameters, petroleum hydrocarbons and volatile organic compounds.

4.4.2 Comparison to Toronto Sanitary and Storm Guidelines

The chemical quality of the tested groundwater sample recovered from Borehole 3 complied with both City of Toronto Sanitary and Storm Sewer By Law Guideline criteria.

4.3 Slug Test

On December 22, 2018, slug test was carried out in Borehole 3 to assess the hydraulic conductivity of the in-situ conductivity of the subsoil. Screen of the monitoring well was placed within the native silty clay deposit. Groundwater level in Borehole 3 was likely originated from water perched in the fine sand deposit overlying the silty clay. At the time of the slug test, groundwater level in Borehole 3 was measured at about 2.78 m below grade.

Water level readings and results of the slug test are provided in Appendix D of the report. The hydraulic conductivity of the native silt clay was found to be 6.82×10^{-7} m/min (1.1 x 10^{-8} m/ sec.). Water level readings and results of slug test analysis are provided in Appendix C.

4.4 Groundwater Quality

Samples of groundwater were collected by Edward Wong for chemical analysis. Sample locations and analytical data are listed in Table 4 below. Certificates of Chemical Analyses are provided in Appendix E.

Table 4: Sample Locations and Analytical Data

Sample I.D.	Borehole Location and Depth	Matrix	Analytical Data
IOO971	BH 3	Groundwater	Toronto Storm and Sanitary Sewer By Law, soluble Sulphate, General and Inorganic Parameters, PHC (F - F4 Fractions) and VOCs.

Notes: PHC - Petroleum Hydrocarbons; VOC's - Volatile Organic Compounds

4.4.1 Comparison to MOE's Document entitled "Soil, Ground Water and Sediment Standards for Use under Part XV.1 of the Environmental Protection Act", dated April 2011

The analytical concentrations of the tested groundwater sample complied with the applicable MOE Document Table 1 (Background Site Conditions) criteria for general and inorganic parameters, petroleum hydrocarbons and volatile organic compounds.

4.4.2 Comparison to Toronto Sanitary and Storm Guidelines

The chemical quality of the tested groundwater sample recovered from Borehole 3 complied with both City of Toronto Sanitary and Storm Sewer By Law Guideline criteria.

4.4.3 Comparison to CSA A23.1 Table 3

The results of sulphate content determination indicated negligible degree of sulphate attack on buried concrete structures. Normal Portland cement (Type 10) can be used in the subsurface concrete.

4.5 Subsoil Quality

Three (3) soil samples were submitted to Maxxam Analytics in Mississauga for chemical analysis. The results of the chemical analysis results were used to determine the disposal options for the excess soil materials.

Sample locations and analytical data are listed in Table 5 below. The Certificates of Chemical Analyses are provided in Appendix E.

Table 5: Sample Locations and Analytical Data

Sample I.D.	Borehole Location and Depth	Matrix	Analytical Data
IMX 964	BH 1, SS2 0.3 - 0.75 m depth	Soil	General and Inorganic Parameters
IMX 965	BH 2, SS3 1.5 - 2.25 m depth	Soil	General and Inorganic Parameters
IMX 966	BH 3, SS4 2.25 - 2.7 m depth	Soil	Petroleum Hydrocarbon (F1- F4) and Volatile Organic Compounds

4.5.1 Assessment Criteria

Comparison with the criteria listed the MOE Document Table 2 (potable groundwater conditions) was chosen as being most appropriate for the purpose of this study. The selection of Table 2 was based on the following:

- The subject property has not been identified as a sensitive Site;
- The subject property is located in an area where local groundwater may still be in use for potable purposes; and
- Full depth restoration of contamination (if encountered) is assumed.

Based on the proposed property use (maintenance shop), industrial/commercial/community (ICC) property use criteria under the MOE Document were considered to be applicable. Soils at the subject Site were visually assesses and classified as fine to medium textured.

Since some receivers of excess soils require conformance with MOE Document Table 1 (Background Site Condition) criteria, a comparison to Table 1 "Residential/ Parkland/ Institutional/ Industry/ Commercial/ Community" (RPIICC) property use criteria were also made.

4.5.2 Comparison to the MOE Document entitled "Soil, Ground Water and Sediment Standards for Use under Part XV.1 of the Environment Protection Act"

4.5.2.1 General and Inorganic Parameters

The analytical concentrations of the soil samples generally complied with the applicable MOE Document Table 1 and 3 criteria for general and inorganic parameters, with the following exceptions.

A Sodium Adsorption Ratio (SAR) value of 8.4 was recorded in the soil sample from Borehole 1. The recorded SAR value exceeded the MOE Document Table 1 RPIICC and Table 3 RPI property use criterion of 2.4 and 5 for SAR, respectively.

The measured concentration of Conductivity in the soil sample recovered from Borehole1 was 0.86 mS/cm, which exceeded the MOE Document Table 1 RPIICC and Table 3 RPI property use criterion of 0.57 mS/cm and 0.7 mS/cm for Conductivity, respectively.

4.5.2.2 Petroleum Hydrocarbons (F1 - F4 Fractions)

The analytical concentrations were below the laboratory detective limits and therefore complied the applicable MOE Document Table 1 and 3 criteria for Petroleum Hydrocarbons (F1- F4 Fractions)

4.2.2.3 Benzene, Toluene, Ethyl-benzene and Xylene

The measured concentrations were below the laboratory detective limits and complied the applicable MOE Document Table 1 and 3 criteria for Benzene, Toluene, Ethyl-benzene and Xylene.

4.2.2.4 Volatile Organic Compounds

The analytical concentrations were below the laboratory detective limits and therefore complied the applicable MOE Document Tables 1 and 3 criteria for Volatile Organic Compounds.

4.5.3 Comments

The SAR and EC parameters were associated with winter road salting activities. It should be noted that the elevated SAR and EC level are not considered to be harmful for human health, but could interference with the growth of certain species of plants and vegetation. Therefore, near surface placement of these materials are not recommended for landscaping, parkland or agricultural purposes. As such, elevated levels of SAR and EC do not automatically preclude disposal at development Sites accepting clean fill.

Excess soil generated at the above captioned site may be disposed of at any land based Sites in Ontario that are being developed for "Residential/ Institutional/ Commercial/ Industrial/ Community" land uses in the areas where landscaping is not intended, subject to approval from individual receiving Site authorities

5. Engineering Discussions and Recommendations

5.1 Short Term Groundwater Control Requirements (Construction Phase)

Groundwater levels in Boreholes 2 and 3 were measured at about 2.76 m to 4.78 m below grade. It is recommended that the groundwater levels be lowered to approximately 1 m below the bottom of excavation to provide a stable working base for construction. In view of the silty nature of the subsoil, no major groundwater problems are anticipated during construction. Groundwater entering into the excavation may be controlled by temporary sump pumps or deep wells. Detailed calculations are provided in Table F-1 in Appendix F.

The estimated factored dewatering flow rate (0.92 m³/day) including direct precipitation (24.97 m³/day) for the proposed apartment building is 25.89 m³/day.

Under the new regulations, a Permit-To-Take Water (PTTW) is required from the Ministry of Environmental and Climate Change (MOECC) if a volume of water greater than 400 m³/ day is pumped from the excavations. If the volume of water to be pumped will be greater than 50 m³/ day but less than 400 m³/ day, the groundwater taking will not require a PPTW, but will need to be registered in the Environmental Activity and Sector Registry (EASR) as a prescribed activity.

Based on the results of dewatering calculations, no PTTW or registration in the EASR will be required.

5.2 Long Term Groundwater Control Requirements (Post-Construction Phase)

If the basement is a water-proofed structure, no long term dewatering is required. In this case, the dewatering flow rate is could be $0 \text{ m}^3/\text{day}$.

If the basement is a drained structure then a permanent dewatering system will be required. Weeping tiles may be installed along the perimeter wall footing and below the floor slab to control the groundwater. The estimated factored dewatering rate for the proposed apartment building is about $0.72 \, \text{m}^3$ / day. Detailed calculations are shown in Table E-1 in Appendix E.

5.3 Assessment of Potential Impacts

At the construction phase, the groundwater may be discharged to low lying area for percolation and evaporation. Should groundwater be discharged into the local storm or sanitary sewer system, a permit or approval from the City of Toronto is required. The chemical quality of the tested groundwater sample recovered from Borehole 3 complied with both City of Toronto Sanitary and Storm Sewer By Law Guideline criteria.

5.3.1 Geotechnical Considerations

The on-site dewatering activities will lower down the local groundwater level, increase the effective stress on the existing footing founding level and increase the potential risk of consolidation.

The estimated zone of influence is 1.32 m during construction and 0.96 m at post construction stage. The estimated zone of influence will not extend beyond the property limits. The on-site dewatering activities will not compromise the stability and integrity of adjacent buildings, site services, landscaped and walkway. It is recommended that a preconstruction survey be carried out, prior to the construction.

5.3.2 Surface Water

The closest surface water feature to the Site is the Don River, which is located at about 2 km to the east of the Site. The Lake Ontario is located at about 3.46 km to the south of the Site. The groundwater control activities will result in localized depression of the groundwater level. The zone of influence is not expected to extend beyond the property limits. The onsite dewatering activities will not have any negative impacts to surface water features.

5.3.3 Local Wells

The Site and surrounding area are provided with municipal piped water and sewer supply. Groundwater is not used for water supply. There would be no impacts to drinking water wells.

5.3.4 Contamination Sources

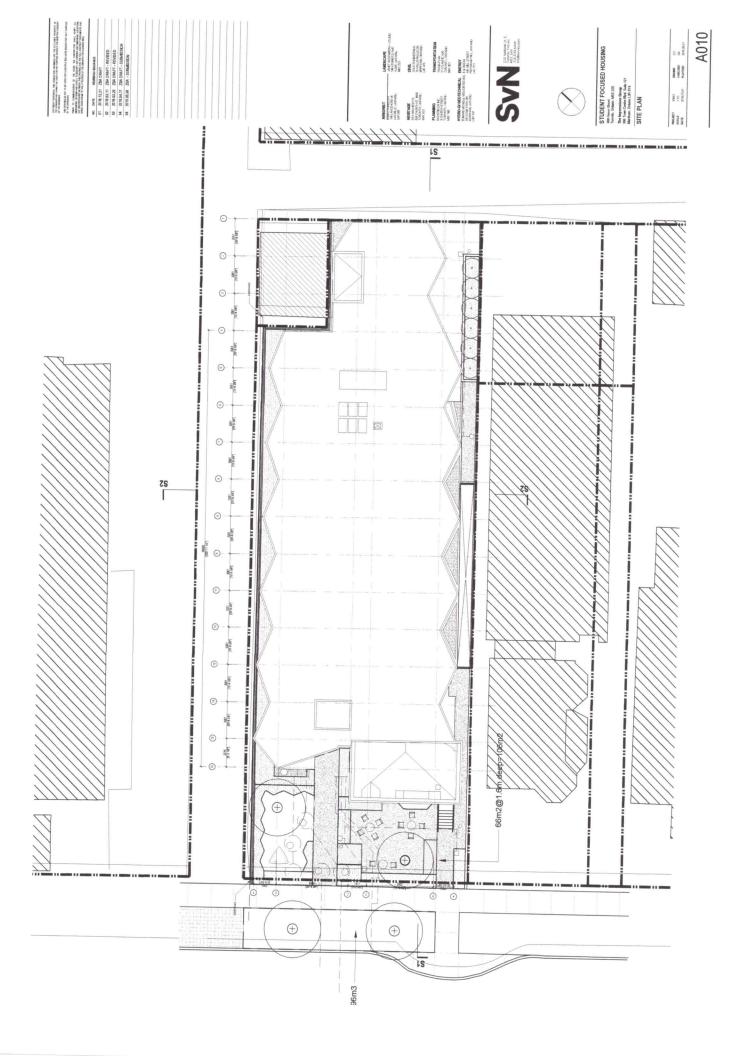
No gasoline stations and auto garages were noted in surrounding properties. A Dry Cleaner Store (St. George Dry Cleaner, 337 Bloor Street West) is located on north adjacent property. The drawdown resulting from the on-site dewatering activities will be localized. The on-site dewatering activities are not expected to draw contaminates from neighborhood properties towards the Site.

6. General Comments

The recommendations in this report have been based on the findings in the boreholes. Soil conditions may vary between and beyond the boreholes. Consequently, during the future development of the property, conditions not observed during this investigation may become apparent; should this occur, Edward Wong & Associates Inc. should be contacted to assess the situation and additional testing and reporting may be required. Edward Wong & Associates Inc. has qualified personnel to provide assistance in regards to future geotechnical, environmental and hydro-geological issues related to this property.

The comments given in this report are intended only for the guidance of design engineers. Edward Wong & Associates Inc. should be retained for a general review of the final design and specifications to verify that this report has been properly interpreted and implemented. If not accorded the privilege of making this review, Edward Wong & Associates Inc. will assume no responsibility for interpretation of the recommendations in the report.

We trust that this report is satisfactory for your purposes. Should you have any questions or comments, please do not hesitate to contact this office.


Yours truly,

Edward Wong & Associates Inc.

Edward B.H. Wong, M. Eng. P. Eng.

Appendix A Site Plan and Cross Sections Proposed Development

| Material | Lucucus | Luc STUDBO CHOOLES STUDBO STUDBO STUDBO STUDBO STUDBO STU090 STUDBO 777 STUDBO STUDBO STUDBO 725.98 STUDBO STUDBO STUDBO STUDBO STUDBO MEZZ. STUDIO STUDBO STUBIO STUBBO STUBBO STUDBO 722.38 STUBBO 911/090 AMENITY PARCEL IM AMEDITY Lival 1992 (19.06) GRADE AT HUROM ST., 128.54 LEVE.4 128.85 LEVEL 2 1530 LEVE 1 110.14 PILEME

STUDENT FOCUSED HOUSING
TO THE PROPERTY OF T

MODIFICATION (MACADE CONTROLLED C

STUDENT FOCUSED HOUSING
STUDENT FOCUSED HOUSING
THERE OF THE STATE OF THE STA

model the same of the same of

				}	20000		
				4	STATE OF THE STATE	a a	
						, I	
	NORTH Decement	Take				BP MCHOL LANE	
	NORTH PROPERTY CONVEYANCE	-			0.2	The state of the s	
					7278 M (2.17	100 (14-12)	
		STUESD	STUDBO	ganii.	100 Merchan	STUGEO	
				ED (4.1)	1 12		
					LGLYN WIL	群	(C) (C)
	Н	STUDIO		CHENC	100 May 100 Ma	MUDIO	BEC PAREMEN
187.01.02	H					ारक विद्या	1 BBC 7
						91 92 92 92 92 92 92 92 92 92 92 92 92 92	
(87/87:55 [29] [28] (28) 361 370 361 370	SOUTH PROPERTY LINE	A					
(20)	SOUTH PROPERTY LINE		HH				
(co)	SOUTH PROPERTY LINE			AN SUBSCIPLINATION OF THE PROPERTY OF THE PROP			
(100) (101) (100)	SOUTH PROPERTY LINE			AN HORON STREET			
so the second	SOUTH PROPERTY LINE			AN ABARCANOS MARIA			
	SOUTH PROPERTY LIST			CATE OF THE PROPERTY OF THE PR	160 24	No. 10 10 10 10 10 10 10 10 10 10 10 10 10	
	##F0				[67] W		斯
ign linguist.	##F0		M		16.5 kg 1	THE MEMORITHM DESCRIPTION OF THE PROPERTY OF T	Øi.

THE STATE OF THE S

Appendix B Logs of Borehole

GENERAL BH / TP / WELL 02568B-409 HURON BH LOGS GPJ GINT CANADA GDT 8/13/02

02568B-409 HURON BH LOGS.GPJ GINT CANADA.GDT 8/13/02

GENERAL BH / TP / WELL

02568B-409 HURON BH LOGS GPJ GINT CANADA GDT 8/13/02

BH / TP / WELL

Appendix C
Results of Grain Size Analysis
and Hydrometer Tests

Edward Wong & Associates Inc. 441 Esna Park Drive, Unit 19 Markham, Ontario, L3R 1H7 Telephone: (416) 903-4288

Fax: (905) 964-1188

Grain Size Analysis and Hydrometer Test

Sample Test No.: S1 Report No.: 1 Date Reported: 23-Dec-18

Project No.:

Ma002568a

Project Name:

409 Huron Street, Toronto

Grain Size Proportion (%)

 Gravel (> 4.75mm):
 6.0

 Sand (> 75μm, < 4.75mm):</td>
 59.6

 Silt (> 2μm), < 75μm):</td>
 28.0

 Clay (< 2μm):</td>
 6.4

Sample Information

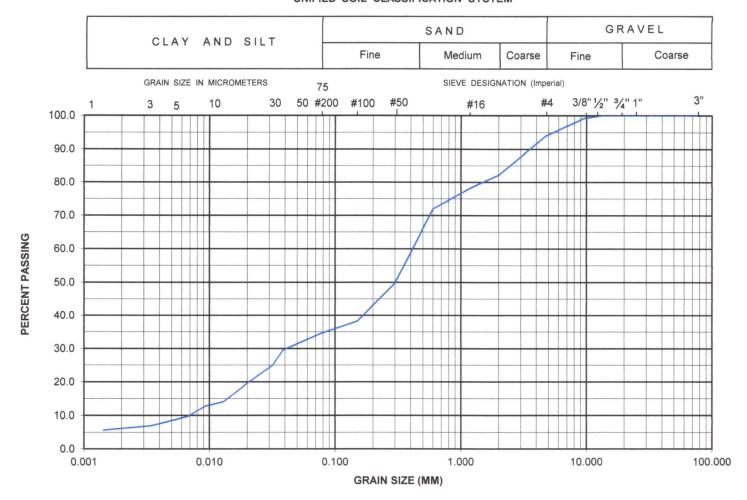
Sample Location: BH 1
Sample No.: 7
Sample Method: SPT
Depth (m): 6.0 - 6.45

Sample Description:

Grey Silty Sand Till

trace silt trace gravel

Sampled By:


J.T. 7-Dec-18

Sampling Date: Client Sample ID:

Comments:

Grain Size (mm)	% Passing	Grain Size (mm)	% Passing
75.00	100.0	0.092	12.8
26.50	100.0	0.007	9.8
19.00	100.0	0.003	7.0
13.25	100.0	0.014	5.7
9.50	99.2		
4.75	94.0		
2.00	82.2		
1.180	78.2		
0.600	71.9		
0.300	49.9		
0.150	38.3		
0.075	34.4		
0.039	29.6		
0.032	24.8		
0.021	20.0		
0.013	14.1		

UNIFIED SOIL CLASSIFICATION SYSTEM

Edward Wong & Associates Inc. 441 Esna Park Drive, Unit 19 Markham, Ontario, L3R 1H7 Telephone: (416) 903-4288 Fax: (905) 964-1188

Grain Size Analysis and Hydrometer Test

Sample Test No.: S2 Report No.: 2 Date Reported: 23-Dec-18

Project No.:

Ma002568a

Project Name: 409 Huron Street, Toronto

Grain Size Proportion (%)

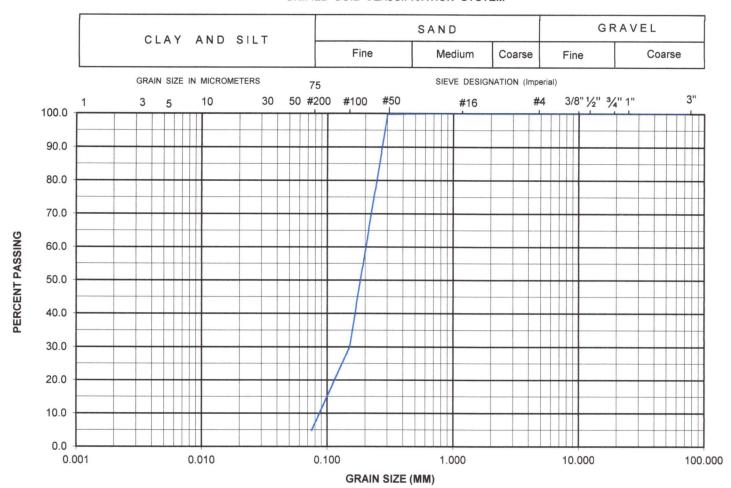
Gravel (> 4.75mm):

Sand (> 75μm, < 4.75mm): 95.2 Silt (> 2μm), < 75μm): 4.8

Clay (< 2μm):

Sample Information

Sample Location: BH 3
Sample No.: 3
Sample Method: SPT
Depth (m): 1.5 - 1.95


Sample Description: Brown Fine Sand, trace silt

Sampled By: J.T.
Sampling Date: 7-Dec-18

Client Sample ID: Comments:

Grain Size (mm)	% Passing	Grain Size (mm)	% Passing
75.00	100.0		
26.50	100.0		
19.00	100.0		
13.25	100.0		
9.50	100.0		
4.75	100.0		
2.00	100.0		
1.180	100.0		
0.600	100.0		
0.300	99.8		
0.150	29.8		
0.075	4.8		

UNIFIED SOIL CLASSIFICATION SYSTEM

Appendix D Results of Slug Test

Edward Wong & Associates Inc. 441 Esna Park Drive, Unit 19 Markham, Ontario **L3R 1H7**

Slug Test - Water Level Data

Page 1 of 1

Project: 409 Huron Street

Number: Ma002568b

Client: The Impression Group

Location: Toronto, Ontario

Slug Test: Slug Test 1

Test Well: BH 3

Test conducted by: J.T.

Test date: 12/22/2018

Water level at t=0 [m]: 7.68

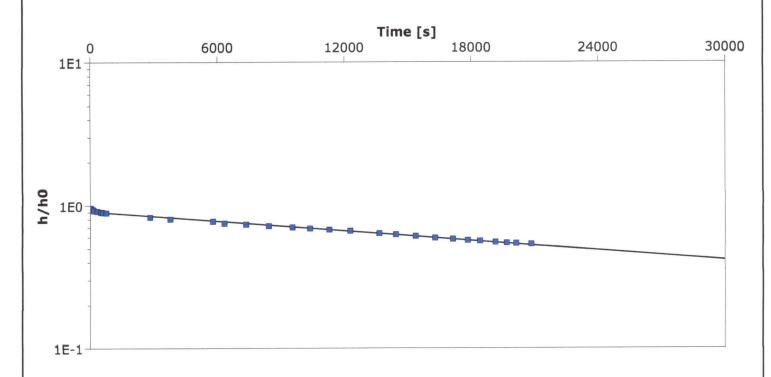
Static water level [m]: 2.76

Water level change at t=0 [m]: 4.92

Water le	evel at t=0 [m]: 7.68		Static water level [m]: 2.76
	Time [s]	Water Level [m]	WL Change [m]
1	41	7.46	4.70
2	113	7.38	4.62
3	174	7.30	4.54
4	334	7.24	4.48
5	497	7.18	4.42
6	590	7.165	4.405
7	749	7.13	4.37
8	2820	6.83	4.07
9	3783	6.705	3.945
10	5786	6.565	3.805
11	6341	6.45	3.69
12	7365	6.38	3.62
13	8432	6.29	3.53
14	9562	6.21	3.45
15	10374	6.14	3.38
16	11292	6.08	3.32
17	12282	6.03	3.27
18	13651	5.875	3.115
19	14430	5.82	3.06
20	15368	5.75	2.99
21	16290	5.665	2.905
22	17135	5.61	2.85
23	17837	5.56	2.80
24	18403	5.52	2.76
25	19132	5.465	2.705
26	19665	5.44	2.68
27	20113	5.42	2.66
28	20826	5.39	2.63

Edward Wong & Associates Inc. 441 Esna Park Drive, Unit 19 Markham, Ontario L3R 1H7

Slug Test Analysis Report


Project: 409 Huron Street

Number: Ma002568b

Client: The Impression Group

Location: Toronto, Ontario	Slug Test: Slug Test 1	Test Well: BH 3		
Test conducted by: J.T.		Test date: 12/22/2018		
Analysis performed by:	New analysis 1	Analysis date: 12/22/2018		

Aquifer Thickness: 7.95 m

Calculation after Hvorslev		
Observation well	Hydraulic Conductivity [m/min]	
BH 3	6.82 × 10 ⁻⁷	

Appendix E Certificate of Chemical Analysis

Your Project #: MA0025686

Site Location: 409 HURON STREET, TORONTO

Your C.O.C. #: 115023

Attention: Edward Wong

Edward Wong & Associates Inc 441 Esna Park Dr Unit 19 Markham, ON CANADA L3R 1H7

Report Date: 2018/12/17

Report #: R5528985 Version: 1 - Final

CERTIFICATE OF ANALYSIS

MAXXAM JOB #: B8W9612 Received: 2018/12/10, 11:25

Sample Matrix: Soil # Samples Received: 3

		Date	Date		
Analyses	Quantity	Extracted	Analyzed	Laboratory Method	Reference
Hot Water Extractable Boron	2	2018/12/14	2018/12/14	CAM SOP-00408	R153 Ana. Prot. 2011
Free (WAD) Cyanide	2	2018/12/13	2018/12/14	CAM SOP-00457	OMOE E3015 m
Conductivity	2	2018/12/14	2018/12/14	CAM SOP-00414	OMOE E3530 v1 m
Hexavalent Chromium in Soil by IC (1)	2	2018/12/14	2018/12/14	CAM SOP-00436	EPA 3060/7199 m
Petroleum Hydro. CCME F1 & BTEX in Soil (2)	1	N/A	2018/12/13	CAM SOP-00315	CCME PHC-CWS m
Petroleum Hydrocarbons F2-F4 in Soil (3)	1	2018/12/12	2018/12/13	CAM SOP-00316	CCME CWS m
Strong Acid Leachable Metals by ICPMS	2	2018/12/14	2018/12/14	CAM SOP-00447	EPA 6020B m
Moisture	1	N/A	2018/12/11	CAM SOP-00445	Carter 2nd ed 51.2 m
Moisture	2	N/A	2018/12/13	CAM SOP-00445	Carter 2nd ed 51.2 m
pH CaCl2 EXTRACT	2	2018/12/14	2018/12/14	CAM SOP-00413	EPA 9045 D m
Sodium Adsorption Ratio (SAR)	2	N/A	2018/12/14	CAM SOP-00102	EPA 6010C

Remarks:

Maxxam Analytics' laboratories are accredited to ISO/IEC 17025:2005 for specific parameters on scopes of accreditation. Unless otherwise noted, procedures used by Maxxam are based upon recognized Provincial, Federal or US method compendia such as CCME, MDDELCC, EPA, APHA.

All work recorded herein has been done in accordance with procedures and practices ordinarily exercised by professionals in Maxxam's profession using accepted testing methodologies, quality assurance and quality control procedures (except where otherwise agreed by the client and Maxxam in writing). All data is in statistical control and has met quality control and method performance criteria unless otherwise noted. All method blanks are reported; unless indicated otherwise, associated sample data are not blank corrected. Where applicable, unless otherwise noted, Measurement Uncertainty has not been accounted for when stating conformity to the referenced standard.

Maxxam Analytics' liability is limited to the actual cost of the requested analyses, unless otherwise agreed in writing. There is no other warranty expressed or implied. Maxxam has been retained to provide analysis of samples provided by the Client using the testing methodology referenced in this report. Interpretation and use of test results are the sole responsibility of the Client and are not within the scope of services provided by Maxxam, unless otherwise agreed in writing. Maxxam is not responsible for the accuracy or any data impacts, that result from the information provided by the customer or their agent.

Solid sample results, except biota, are based on dry weight unless otherwise indicated. Organic analyses are not recovery corrected except for isotope dilution methods.

Results relate to samples tested. When sampling is not conducted by Maxxam, results relate to the supplied samples tested.

This Certificate shall not be reproduced except in full, without the written approval of the laboratory.

Reference Method suffix "m" indicates test methods incorporate validated modifications from specific reference methods to improve performance.

^{*} RPDs calculated using raw data. The rounding of final results may result in the apparent difference.

Your Project #: MA0025686

Site Location: 409 HURON STREET, TORONTO

Your C.O.C. #: 115023

Attention: Edward Wong

Edward Wong & Associates Inc 441 Esna Park Dr Unit 19 Markham, ON CANADA L3R 1H7

Report Date: 2018/12/17

Report #: R5528985 Version: 1 - Final

CERTIFICATE OF ANALYSIS

MAXXAM JOB #: B8W9612 Received: 2018/12/10, 11:25

(1) Soils are reported on a dry weight basis unless otherwise specified.

(2) No lab extraction date is given for F1BTEX & VOC samples that are field preserved with methanol. Extraction date is the date sampled unless otherwise stated.

(3) All CCME PHC results met required criteria unless otherwise stated in the report. The CWS PHC methods employed by Maxxam conform to all prescribed elements of the reference method and performance based elements have been validated. All modifications have been validated and proven equivalent following "Alberta Environment's Interpretation of the Reference Method for the Canada-Wide Standard for Petroleum Hydrocarbons in Soil Validation of Performance-Based Alternative Methods September 2003". Documentation is available upon request. Modifications from Reference Method for the Canada-wide Standard for Petroleum Hydrocarbons in Soil-Tier 1 Method: F2/F3/F4 data reported using validated cold solvent extraction instead of Soxhlet extraction.

Encryption Key

Please direct all questions regarding this Certificate of Analysis to your Project Manager. Gina Baybayan, Project Manager

Email: GBaybayan@maxxam.ca

Phone# (905)817-5766

______ Maxxam has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per section 5.10.2 of ISO/IEC 17025:2005(E), signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

Edward Wong & Associates Inc Client Project #: MA0025686

Site Location: 409 HURON STREET, TORONTO

Sampler Initials: JT

O.REG 153 METALS & INORGANICS PKG (SOIL)

Maxxam ID			IMX964	IMX964	IMX965		
Sampling Date			2018/12/07	2018/12/07	2018/12/06		
COC Number			115023	115023	115023		
	UNITS	Criteria	1-2	1-2 Lab-Dup	2-3	RDL	QC Batch
Calculated Parameters							
Sodium Adsorption Ratio	N/A	2.4	1.1	N/A	8.4	N/A	5879803
Inorganics							
Conductivity	mS/cm	0.57	0.11	0.11	0.86	0.002	5888922
Moisture	%	-	8.5	8.1	9.0	1.0	5886262
Available (CaCl2) pH	рН	-	7.72	N/A	8.24	N/A	5887099
WAD Cyanide (Free)	ug/g	0.051	<0.01	N/A	<0.01	0.01	5886602
Chromium (VI)	ug/g	0.66	0.3	N/A	<0.2	0.2	5888446
Metals							
Hot Water Ext. Boron (B)	ug/g	-	0.13	N/A	0.62	0.050	5888649
Acid Extractable Antimony (Sb)	ug/g	1.3	<0.20	N/A	0.26	0.20	5888629
Acid Extractable Arsenic (As)	ug/g	18	<1.0	N/A	5.7	1.0	5888629
Acid Extractable Barium (Ba)	ug/g	220	13	N/A	31	0.50	5888629
Acid Extractable Beryllium (Be)	ug/g	2.5	<0.20	N/A	0.27	0.20	5888629
Acid Extractable Boron (B)	ug/g	36	<5.0	N/A	<5.0	5.0	5888629
Acid Extractable Cadmium (Cd)	ug/g	1.2	<0.10	N/A	<0.10	0.10	5888629
Acid Extractable Chromium (Cr)	ug/g	70	14	N/A	10	1.0	5888629
Acid Extractable Cobalt (Co)	ug/g	21	2.4	N/A	2.9	0.10	5888629
Acid Extractable Copper (Cu)	ug/g	92	2.8	N/A	7.0	0.50	5888629
Acid Extractable Lead (Pb)	ug/g	120	2.4	N/A	29	1.0	5888629
Acid Extractable Molybdenum (Mo)	ug/g	2	<0.50	N/A	0.58	0.50	5888629
Acid Extractable Nickel (Ni)	ug/g	82	4.9	N/A	6.7	0.50	5888629
Acid Extractable Selenium (Se)	ug/g	1.5	<0.50	N/A	<0.50	0.50	5888629
Acid Extractable Silver (Ag)	ug/g	0.5	<0.20	N/A	<0.20	0.20	5888629
Acid Extractable Thallium (TI)	ug/g	1	<0.050	N/A	0.079	0.050	5888629
Acid Extractable Uranium (U)	ug/g	2.5	0.49	N/A	0.50	0.050	5888629
Acid Extractable Vanadium (V)	ug/g	86	43	N/A	28	5.0	5888629
Acid Extractable Zinc (Zn)	ug/g	290	9.1	N/A	22	5.0	5888629

No Fill
Grey
Black

No Exceedance

Exceeds 1 criteria policy/level Exceeds both criteria/levels

RDL = Reportable Detection Limit QC Batch = Quality Control Batch

Lab-Dup = Laboratory Initiated Duplicate

Criteria: Ontario Reg. 153/04 (Amended April 15, 2011)
Table 1: Full Depth Background Site Condition Standards

Soil - Residential/Parkland/Institutional/Industrial/Commercial/Community Property Use

Edward Wong & Associates Inc Client Project #: MA0025686

Site Location: 409 HURON STREET, TORONTO

Sampler Initials: JT

O.REG 153 METALS & INORGANICS PKG (SOIL)

Maxxam ID			IMX964	IMX964	IMX965		
Sampling Date			2018/12/07	2018/12/07	2018/12/06		
COC Number			115023	115023	115023		
	UNITS	Criteria	1-2	1-2 Lab-Dup	2-3	RDL	QC Batch
Acid Extractable Mercury (Hg)	ug/g	0.27	<0.050	N/A	<0.050	0.050	5888629

No Fill

No Exceedance

Grey

Exceeds 1 criteria policy/level

Black Exceeds both criteria/levels

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

Lab-Dup = Laboratory Initiated Duplicate

Criteria: Ontario Reg. 153/04 (Amended April 15, 2011) Table 1: Full Depth Background Site Condition Standards

Soil - Residential/Parkland/Institutional/Industrial/Commercial/Community Property Use

Edward Wong & Associates Inc Client Project #: MA0025686

Site Location: 409 HURON STREET, TORONTO

Sampler Initials: JT

O.REG 153 PETROLEUM HYDROCARBONS (SOIL)

Maxxam ID			IMX966	IMX966		
Sampling Date			2018/12/07	2018/12/07		
COC Number			115023	115023		
	UNITS	Criteria	3-4	3-4 Lab-Dup	RDL	QC Batch
Inorganics						
Moisture	%	-	17	17	1.0	5882040
BTEX & F1 Hydrocarbons						
Benzene	ug/g	0.02	<0.020	N/A	0.020	5885401
Toluene	ug/g	0.2	<0.020	N/A	0.020	5885401
Ethylbenzene	ug/g	0.05	<0.020	N/A	0.020	5885401
o-Xylene	ug/g	* 1	<0.020	N/A	0.020	5885401
p+m-Xylene	ug/g	-	<0.040	N/A	0.040	5885401
Total Xylenes	ug/g	0.05	<0.040	N/A	0.040	5885401
F1 (C6-C10)	ug/g	25	<10	N/A	10	5885401
F1 (C6-C10) - BTEX	ug/g	25	<10	N/A	10	5885401
F2-F4 Hydrocarbons						
F2 (C10-C16 Hydrocarbons)	ug/g	10	<10	N/A	10	5884033
F3 (C16-C34 Hydrocarbons)	ug/g	240	<50	N/A	50	5884033
F4 (C34-C50 Hydrocarbons)	ug/g	120	<50	N/A	50	5884033
Reached Baseline at C50	ug/g	-	Yes	N/A	N/A	5884033
Surrogate Recovery (%)						
1,4-Difluorobenzene	%.		103	N/A	N/A	5885401
4-Bromofluorobenzene	%	-	97	N/A	N/A	5885401
D10-Ethylbenzene	%	-	81	N/A	N/A	5885401
D4-1,2-Dichloroethane	%	-	102	N/A	N/A	5885401
o-Terphenyl	%	-	105	N/A	N/A	5884033

No Fill

No Exceedance

Grey Black Exceeds 1 criteria policy/level

Exceeds both criteria/levels

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

Lab-Dup = Laboratory Initiated Duplicate

Criteria: Ontario Reg. 153/04 (Amended April 15, 2011) Table 1: Full Depth Background Site Condition Standards

Soil - Residential/Parkland/Institutional/Industrial/Commercial/Community Property Use

Edward Wong & Associates Inc Client Project #: MA0025686

Site Location: 409 HURON STREET, TORONTO

Sampler Initials: JT

TEST SUMMARY

Maxxam ID: IMX964 Sample ID: 1-2 Matrix: Soil

Collected: 2018/12/07

Shipped:

Received: 2018/12/10

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Hot Water Extractable Boron	ICP	5888649	2018/12/14	2018/12/14	Suban Kanapathippllai
Free (WAD) Cyanide	TECH	5886602	2018/12/13	2018/12/14	Louise Harding
Conductivity	AT	5888922	2018/12/14	2018/12/14	Kazzandra Adeva
Hexavalent Chromium in Soil by IC	IC/SPEC	5888446	2018/12/14	2018/12/14	Sally Norouz
Strong Acid Leachable Metals by ICPMS	ICP/MS	5888629	2018/12/14	2018/12/14	Daniel Teclu
Moisture	BAL	5886262	N/A	2018/12/13	Jatinder Ghumann
pH CaCl2 EXTRACT	AT	5887099	2018/12/14	2018/12/14	Neil Dassanayake
Sodium Adsorption Ratio (SAR)	CALC/MET	5879803	N/A	2018/12/14	Automated Statchk

Maxxam ID: IMX964 Dup

Matrix: Soil

Collected: 2018/12/07 Sample ID: 1-2

Shipped:

Matrix: Soil Received: 2018/12/10

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Conductivity	AT	5888922	2018/12/14	2018/12/14	Kazzandra Adeva
Moisture	BAL	5886262	N/A	2018/12/13	Jatinder Ghumann

Maxxam ID: IMX965 Collected: 2018/12/06 Sample ID: 2-3

Shipped:

Received: 2018/12/10

Test Description Instrumentation Batch Extracted **Date Analyzed** Analyst Hot Water Extractable Boron ICP 5888649 2018/12/14 2018/12/14 Suban Kanapathippllai Free (WAD) Cyanide TECH 5886602 2018/12/13 2018/12/14 Louise Harding Conductivity AT 5888922 2018/12/14 2018/12/14 Kazzandra Adeva Hexavalent Chromium in Soil by IC IC/SPEC 5888446 2018/12/14 2018/12/14 Sally Norouz Strong Acid Leachable Metals by ICPMS ICP/MS 2018/12/14 5888629 2018/12/14 Daniel Teclu Moisture BAL 5886262 N/A 2018/12/13 Jatinder Ghumann pH CaCl2 EXTRACT AT 5887099 2018/12/14 2018/12/14 Neil Dassanayake Sodium Adsorption Ratio (SAR) CALC/MET 5879803 N/A 2018/12/14 Automated Statchk

Maxxam ID: IMX966 Collected: 2018/12/07 Sample ID: 3-4 Shipped:

Matrix: Soil Received: 2018/12/10

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Petroleum Hydro. CCME F1 & BTEX in Soil	HSGC/MSFD	5885401	N/A	2018/12/13	Georgeta Rusu
Petroleum Hydrocarbons F2-F4 in Soil	GC/FID	5884033	2018/12/12	2018/12/13	Prabhjot Gulati
Moisture	BAL	5882040	N/A	2018/12/11	Prgya Panchal

Maxxam ID: IMX966 Dup Collected: 2018/12/07 Sample ID: 3-4 Shipped:

Received: Matrix: Soil 2018/12/10

Test Description Date Analyzed Instrumentation Batch **Extracted** Analyst Moisture BAL 5882040 2018/12/11 Prgya Panchal N/A

Edward Wong & Associates Inc Client Project #: MA0025686

Site Location: 409 HURON STREET, TORONTO

Sampler Initials: JT

GENERAL COMMENTS

ſ	Each te	emperature is the a	everage of up to t	nree cooler temperatures taken at receipt
١		Package 1	12.0°C	
				-
	Results	relate only to the	items tested.	

QUALITY ASSURANCE REPORT

Edward Wong & Associates Inc Client Project #: MA0025686

Site Location: 409 HURON STREET, TORONTO Sampler Initials: JT

			Matrix Spike	Spike	SPIKED BLANK	LANK	Method Blank	ank	RPD	
Or Batch	Darameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	UNITS	Value (%)	QC Limits
C004022	o-Tarnhanvi	2018/12/12	96	60 - 130	104	60 - 130	101	%		
50054033	1.4-Diffuorobenzene	2018/12/13	102	60 - 140	103	60 - 140	106	%		
5885401	4-Bromofliorobenzene	2018/12/13	96	60 - 140	66	60 - 140	66	%		
5885401	D10-Fthylbenzene	2018/12/13	68	60 - 140	86	60 - 140	81	%		
5885401	D4-1 2-Dichloroethane	2018/12/13	100	60 - 140	101	60 - 140	104	%		
2000000	Moisture	2018/12/11							0	20
5882040	E2 (C10-C16 Hydrocarbons)	2018/12/13	93	50 - 130	100	80 - 120	<10	g/gn	NC	30
5004033	E3 (C16-C34 Hydrocarbons)	2018/12/13	95	50 - 130	103	80 - 120	<50	g/gn	NC	30
5004033	F4 (C34-C50 Hydrocarbons)	2018/12/13	97	50 - 130	104	80 - 120	<50	g/gn	NC	30
100FA013	Benzene	2018/12/13	83	60 - 140	06	60 - 140	<0.020	g/gn	NC	20
10001401	Ethylponione	2018/12/13	86	60 - 140	90	60 - 140	<0.020	g/gn	NC	50
2883401	Etilybelizerie	2018/12/13					<10	g/gn	NC	30
5885401	F1 (C0-C10) - D1CA	2018/12/13	103	60 - 140	106	80 - 120	<10	g/gn	NC	30
5885401	FI (Co-CIU)	2018/12/13	84	60 - 140	68	60 - 140	<0.020	B/Bn	NC	50
5885401	o-Aylene	2018/12/13	85	60 - 140	06	60 - 140	<0.040	g/gn	NC	20
5885401	p+m-Xylene	2010/12/13	000	60 140	92	60 - 140	<0.020	g/gn	NC	50
5885401	Toluene	2018/12/13	00	00 - T40	25	2	Z0.040	119/9	NC	50
5885401	Total Xylenes	2018/12/13					200	0 /05	4.8	20
5886262	Moisture	2018/12/13						,	9	35
5886602	WAD Cyanide (Free)	2018/12/14	60 (1)	75 - 125	100	80 - 120	<0.01	g/gn	NC	33
5887099	Available (CaCl2) pH	2018/12/14			86	97 - 103			0.81	N/A
500000	Chromium (VI)	2018/12/14	49 (2)	70 - 130	87	80 - 120	<0.2	g/gn	NC	35
000000	Acid Extractable Antimony (Sb)	2018/12/14	96	75 - 125	103	80 - 120	<0.20	g/gn	NC	30
200002	Acid Extractable Arsenic (As)	2018/12/14	97	75 - 125	101	80 - 120	<1.0	g/gn	11	30
300002	Acid Extractable Barium (Ra)	2018/12/14	NC	75 - 125	100	80 - 120	<0.50	g/gn	0.27	30
200002	Acid Extractable Bendlium (Be)	2018/12/14	102	75 - 125	103	80 - 120	<0.20	g/gn	4.3	30
2000023	Acid Extractable Roron (R)	2018/12/14	94	75 - 125	103	80 - 120	<5.0	g/gn	NC	30
3000023	Acid Extractable Cadmium (Cd)	2018/12/14	105	75 - 125	108	80 - 120	<0.10	g/gn	15	30
5000629	Acid Extractable Chromium (Cr)	2018/12/14	100	75 - 125	109	80 - 120	<1.0	g/gn	7.6	30
200000	Acid Extractable Cobalt (Co)	2018/12/14	66	75 - 125	106	80 - 120	<0.10	g/gn	6.3	30
000000	Acid Extractable Conner (Ci)	2018/12/14	94	75 - 125	107	80 - 120	<0.50	g/gn	0.89	30
2888029	Acid Extractable Load (Dh)	2018/12/14	97	75 - 125	102	80 - 120	<1.0	g/gn	5.4	30
2888029	Acid Extracted to Education (Inc.)	2018/12/14	96	75 - 125	97	80 - 120	<0.050	g/gn	NC	30
2888629	Acid Extractable intelleury (rig)	- 1- 10-0-								

Report Date: 2018/12/17

QUALITY ASSURANCE REPORT(CONT'D)

Edward Wong & Associates Inc Client Project #: MA0025686 Site Location: 409 HURON STREET, TORONTO

Sampler Initials: JT

			Matrix Spike	Spike	SPIKED BLANK	BLANK	Method Blank	Slank	RPD	0
OC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	UNITS	Value (%)	QC Limits
5888629	Acid Extractable Molvbdenum (Mo)	2018/12/14	102	75 - 125	107	80 - 120	<0.50	g/gn	5.6	30
5888629	Acid Extractable Nickel (Ni)	2018/12/14	66	75 - 125	108	80 - 120	<0.50	g/gn	5.6	30
5888629	Acid Extractable Selenium (Se)	2018/12/14	101	75 - 125	106	80 - 120	<0.50	g/gn	NC	30
5888629	Acid Extractable Silver (Ag)	2018/12/14	102	75 - 125	103	80 - 120	<0.20	g/gn	NC	30
5888629	Acid Extractable Thallium (TI)	2018/12/14	66	75 - 125	102	80 - 120	<0.050	g/gn	19	30
5888679	Acid Extractable Uranium (U)	2018/12/14	93	75 - 125	93	80 - 120	<0.050	B/Bn	0.39	30
5888679	Acid Extractable Vanadium (V)	2018/12/14	102	75 - 125	107	80 - 120	<5.0	B/Bn	0.65	30
5888629	Acid Extractable Zinc (Zn)	2018/12/14	NC	75 - 125	107	80 - 120	<5.0	g/gn	0.77	30
5888649	Hot Water Ext. Boron (B)	2018/12/14	94	75 - 125	96	75 - 125	<0.050	g/gn	NC	40
5888922	Conductivity	2018/12/14			102	90 - 110	<0.002	mS/cm	0.093	10
olderline A series										

N/A = Not Applicable

Duplicate: Paired analysis of a separate portion of the same sample. Used to evaluate the variance in the measurement.

Matrix Spike: A sample to which a known amount of the analyte of interest has been added. Used to evaluate sample matrix interference.

Spiked Blank: A blank matrix sample to which a known amount of the analyte, usually from a second source, has been added. Used to evaluate method accuracy.

Method Blank: A blank matrix containing all reagents used in the analytical procedure. Used to identify laboratory contamination.

Surrogate: A pure or isotopically labeled compound whose behavior mirrors the analytes of interest. Used to evaluate extraction efficiency.

NC (Matrix Spike): The recovery in the matrix spike was not calculated. The relative difference between the concentration in the parent sample and the spike amount was too small to permit a reliable recovery calculation (matrix spike concentration was less than the native sample concentration)

NC (Duplicate RPD): The duplicate RPD was not calculated. The concentration in the sample and/or duplicate was too low to permit a reliable RPD calculation (absolute difference <= 2x RDL).

(1) Recovery or RPD for this parameter is outside control limits. The overall quality control for this analysis meets acceptability criteria.

(2) The matrix spike recovery was below the lower control limit. This may be due in part to the reducing environment of the sample. The sample was reanalyzed with the same results.

Edward Wong & Associates Inc Client Project #: MA0025686

Site Location: 409 HURON STREET, TORONTO

Sampler Initials: JT

VALIDATION SIGNATURE PAGE

The analytical data and all QC contained in this report were reviewed and validated by the following individual(s).

Anastassia Hamanov, Scientific Specialist

Maxxam has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per section 5.10.2 of ISO/IEC 17025:2005(E), signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

Maxxam A Bureau Veritas Group Company

6740 Campobello Road, Mississauga, Ontario LSN 218 Phone 905-817-5700 Fax: 905-817-5779 Tell Free: 800-563-6266 CAM FCD-01191/3

CHAIN OF CUSTODY RECORD 115023 Page of

		Report Information (if differs from invoice)	TOOL (IT GITTELS IT OUT IT WORKED				-
							Regular IAN (5-V days) Most analyses
ompany Name Edward Kang & A	800, at 8.	Company Name:		Quotation #:	#		francisco de la constante de l
The state of the s	Cont	Contact Name:		P.O. #/ AFE#			PLEASE PROVIDE ADVANCE NOTICE FOR RUSH PRUJECTS
	Drive Address:	ess:		Project #:	Macc 2568 6	C	h TAT (Surcharges will be a
	now.			Site Locati	Site Lucation: 4CQ 44CC	Steet	1 Day 2 Days 3-4 Days
416 - 93 - 4268 Fax	Phone:	ě	Fax:	Site #:	Territo		
edeclusic ver	cates, com. Email:	a		Sampled By:	H. U.T.		Date Required:
	WATER OR WATER INTENDE	D FOR HUMAN CONSUMPTIC	MOS BESTIE ATER DRINKING WATER OR WATER INTENDED FOR HUMAN CONSUMPTION MUST BE SUBMITTED ON THE MAXXAM DRINKING WATER CHAIN OF CUSTODY	HE MAXXAM DRINKING WA	TER CHAIN OF CUSTODY		Rush Confirmation #:
Reenlation 153	Othe	Other Regulations		Analysis	Analysis Requested		LABORATORY USE ONLY
4h	CCME	Sanitary Sewer Bylaw Storm Sewer Bylaw Region) C(A)		Jiwos.		CUSTODY SEAL Y (N) Present innact
Table FOR RSC (PLEASE CIRCLE) V / N	Other (Specify)	Other (Specify) REG 558 (MIN. 3 DAY TAT REQUIRED)	G3TT 8 ^H \ zlezaM	HM2 - B)	to the		12 12 12
nclude Criteria on Certificate of Analysis: Y / N			_	METALS	- 1-1 - 1-1	SZATANA	
Samples must be kept cool (< 10 $^{\circ}\mathrm{C}$) from time of sampling until Delivery to	M TIME OF SAMPLING UNTIL	DELIVERY TO MAXXAM	(FRED (CPMS) :	TON O	COOLING MEDIA PRESENT: V / (N)
SAMPLE IDENTIFICATION	DATE SAMPLED (YYYY/MM/DD)	TIME SAMPLED (HH:MM)	MATERIAL PHICE BITEX/ PHICE	HEG T23 I HEG T23 I HEG T23 I	Arguer P H d	а -атон	COMMENTS
11-2	DC7,18	8 GIM 200	12		>		Citat Ging.
6-2		18 9im			>		
3 3-4	122.7	18 B.m			>		
4							
5							
9							
7							
90						+	
6						+	
10		-				Tibes. Attinged	10-Dec-18 11:25
RELINQUISHED BY: (Signature/Print)	DATE: (YYYY/MM/DD)	DD) TIME: (HH:MM)	RECEIVED BY: (RECEIVED BY: (Signature/Print)	DAIE: (YYYY/MM/DU)	IIME: (TILIMIN	C2:11 01-22-21
X 61/2 X 1/2)	JEC 10, 2018	3 am	Ru. Ktul	Lai Pode	201/1/101	2	
					_		DOW 2012

Unless otherwise agreed to in writing, work submitted on this Chain of Custody is subject to Maxxam's standard Terms and Conditions. Signing of this Chain of Custody document is acknow available for viewing at www.maxxam.ca/wp-content/uploads/Ontario-COC.

COC-1004 (03/17)

White: Maxxam - Yellow: Client

Your Project #: 469 HURON ST, TORONTO

Site Location: MA002568 Your C.O.C. #: 696646-01-01

Attention: Edward Wong

Edward Wong & Associates Inc 441 Esna Park Dr Unit 19 Markham, ON CANADA L3R 1H7

> Report Date: 2018/12/28 Report #: R5541487

Version: 1 - Final

CERTIFICATE OF ANALYSIS

MAXXAM JOB #: B8X7317 Received: 2018/12/17, 14:57

Sample Matrix: Water # Samples Received: 1

# Samples Neceived. 1		Date	Date		
Analyses	Quantity	Extracted	Analyzed	Laboratory Method	Reference
Sewer Use By-Law Semivolatile Organics	1	2018/12/19	2018/12/20	CAM SOP 00301	EPA 8270 m
Biochemical Oxygen Demand (BOD)	1	2018/12/18	2018/12/23	CAM SOP-00427	SM 23 5210B m
Chloride by Automated Colourimetry	1	N/A	2018/12/19	CAM SOP-00463	EPA 325.2 m
Chromium (VI) in Water	1	N/A	2018/12/21	CAM SOP-00436	EPA 7199 m
Free (WAD) Cyanide	1	N/A	2018/12/18	CAM SOP-00457	OMOE E3015 m
Total Cyanide	1	2018/12/18	2018/12/18	CAM SOP-00457	OMOE E3015 5 m
Fluoride	1	2018/12/18	2018/12/19	CAM SOP-00449	SM 23 4500-F C m
Mercury in Water by CVAA	1	2018/12/21	2018/12/21	CAM SOP-00453	EPA 7470A m
Mercury	1	2018/12/21	2018/12/21	CAM SOP-00453	EPA 7470A m
Dissolved Metals by ICPMS	1	N/A	2018/12/21	CAM SOP-00447	EPA 6020B m
Total Metals Analysis by ICPMS	1	N/A	2018/12/20	CAM SOP-00447	EPA 6020B m
E.coli, (CFU/100mL)	1	N/A	2018/12/17	CAM SOP-00552	MOE LSB E3371
Total Nonylphenol in Liquids by HPLC	1	2018/12/21	2018/12/22	CAM SOP-00313	In-house Method
Nonylphenol Ethoxylates in Liquids: HPLC	1	2018/12/21	2018/12/22	CAM SOP-00313	In-house Method
Animal and Vegetable Oil and Grease	1	N/A	2018/12/20	CAM SOP-00326	EPA1664B m,SM5520B m
Total Oil and Grease	1	2018/12/20	2018/12/20	CAM SOP-00326	EPA1664B m,SM5520A m
Polychlorinated Biphenyl in Water	1	2018/12/18	2018/12/19	CAM SOP-00309	EPA 8082A m
рН	1	N/A	2018/12/19	CAM SOP-00413	SM 4500H+ B m
Phenols (4AAP)	1	N/A	2018/12/20	CAM SOP-00444	OMOE E3179 m
Sulphate by Automated Colourimetry	1	N/A	2018/12/19	CAM SOP-00464	EPA 375.4 m
Total Kjeldahl Nitrogen in Water	1	2018/12/18	2018/12/19	CAM SOP-00938	OMOE E3516 m
Total PAHs (1)	1	N/A	2018/12/20	CAM SOP - 00301	EPA 8270 m
Mineral/Synthetic O & G (TPH Heavy Oil) (2)	1	2018/12/20	2018/12/20	CAM SOP-00326	EPA1664B m,SM5520F m
Total Suspended Solids	1	2018/12/18	2018/12/19	CAM SOP-00428	SM 23 2540D m
Volatile Organic Compounds in Water	1	N/A	2018/12/20	CAM SOP-00228	EPA 8260C m

Remarks:

Maxxam Analytics' laboratories are accredited to ISO/IEC 17025:2005 for specific parameters on scopes of accreditation. Unless otherwise noted, procedures used by Maxxam are based upon recognized Provincial, Federal or US method compendia such as CCME, MDDELCC, EPA, APHA.

All work recorded herein has been done in accordance with procedures and practices ordinarily exercised by professionals in Maxxam's profession using accepted testing methodologies, quality assurance and quality control procedures (except where otherwise agreed by the client and Maxxam in writing). All

Your Project #: 469 HURON ST, TORONTO

Site Location: MA002568 Your C.O.C. #: 696646-01-01

Attention: Edward Wong

Edward Wong & Associates Inc 441 Esna Park Dr Unit 19 Markham, ON L3R 1H7 CANADA

Report Date: 2018/12/28

Report #: R5541487 Version: 1 - Final

CERTIFICATE OF ANALYSIS

MAXXAM JOB #: B8X7317

Received: 2018/12/17, 14:57

data is in statistical control and has met quality control and method performance criteria unless otherwise noted. All method blanks are reported; unless indicated otherwise, associated sample data are not blank corrected. Where applicable, unless otherwise noted, Measurement Uncertainty has not been accounted for when stating conformity to the referenced standard.

Maxxam Analytics' liability is limited to the actual cost of the requested analyses, unless otherwise agreed in writing. There is no other warranty expressed or implied. Maxxam has been retained to provide analysis of samples provided by the Client using the testing methodology referenced in this report. Interpretation and use of test results are the sole responsibility of the Client and are not within the scope of services provided by Maxxam, unless otherwise agreed in writing. Maxxam is not responsible for the accuracy or any data impacts, that result from the information provided by the customer or their agent.

Solid sample results, except biota, are based on dry weight unless otherwise indicated. Organic analyses are not recovery corrected except for isotope dilution methods.

Results relate to samples tested. When sampling is not conducted by Maxxam, results relate to the supplied samples tested.

This Certificate shall not be reproduced except in full, without the written approval of the laboratory.

Reference Method suffix "m" indicates test methods incorporate validated modifications from specific reference methods to improve performance.

- * RPDs calculated using raw data. The rounding of final results may result in the apparent difference.
- (1) Total PAHs include only those PAHs specified in the sewer use by-by-law.
- (2) Note: TPH (Heavy Oil) is equivalent to Mineral / Synthetic Oil & Grease

Encryption Key

Please direct all questions regarding this Certificate of Analysis to your Project Manager.

Gina Baybayan, Project Manager Email: GBaybayan@maxxam.ca

Phone# (905)817-5766

Maxxam has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per section 5.10.2 of ISO/IEC 17025:2005(E), signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

Edward Wong & Associates Inc

Client Project #: 469 HURON ST, TORONTO

Site Location: MA002568

Sampler Initials: JT

TORONTO SANITARY & STORM SEWER PACKAGE (WATER)

Maxxam ID				100971		
Sampling Date				2018/12/17		
COC Number				696646-01-01		
	UNITS	San	Stm	вн3	RDL	QC Batcl
Calculated Parameters						
Total Animal/Vegetable Oil and Grease	mg/L	150	-	<0.50	0.50	5891843
Inorganics						
Total BOD	mg/L	300	15	5	2	589432
Fluoride (F-)	mg/L	10	1-1	0.20	0.10	589529
Total Kjeldahl Nitrogen (TKN)	mg/L	100	-	0.48	0.10	589556
рН	рН	6.0:11.5	6.0:9.5	8.03	N/A	589529
Phenols-4AAP	mg/L	1.0	0.008	<0.0010	0.0010	589652
Total Suspended Solids	mg/L	350	15	<10	10	589405
Total Cyanide (CN)	mg/L	2	0.02	<0.0050	0.0050	589436
Petroleum Hydrocarbons						
Total Oil & Grease	mg/L	-	-	<0.50	0.50	589948
Total Oil & Grease Mineral/Synthetic	mg/L	15	- '	<0.50	0.50	589949
Miscellaneous Parameters						
Nonylphenol Ethoxylate (Total)	mg/L	0.2	0.01	<0.005	0.005	590094
Nonylphenol (Total)	mg/L	0.02	0.001	<0.001	0.001	590093
Metals						
Chromium (VI)	ug/L	2000	40	<0.50	0.50	589292
Mercury (Hg)	mg/L	0.01	0.0004	<0.0001	0.0001	590065
Total Aluminum (Al)	ug/L	50000	-	14	5.0	589890
Total Antimony (Sb)	ug/L	5000	-	2.2	0.50	589890
Total Arsenic (As)	ug/L	1000	20	1.5	1.0	589890
Total Cadmium (Cd)	ug/L	700	8	<0.10	0.10	589890
Total Chromium (Cr)	ug/L	4000	80	<5.0	5.0	589890
Total Cobalt (Co)	ug/L	5000	-	<0.50	0.50	589890
Total Copper (Cu)	ug/L	2000	40	<1.0	1.0	589890
Total Lead (Pb)	ug/L	1000	120	<0.50	0.50	589890
Total Manganese (Mn)	ug/L	5000	50	42	2.0	589890
Total Molybdenum (Mo)	ug/L	5000	-	7.4	0.50	589890
Total Nickel (Ni)	ug/L	2000	80	1.0	1.0	589890

No Fill Grey

Black

No Exceedance

Exceeds 1 criteria policy/level Exceeds both criteria/levels

RDL = Reportable Detection Limit QC Batch = Quality Control Batch

San,Stm: Toronto Sanitary and Storm Sewer Use By Law Guidelines, respectively. Referenced to Chapter 681

Edward Wong & Associates Inc Client Project #: 469 HURON ST, TORONTO

Site Location: MA002568

Sampler Initials: JT

TORONTO SANITARY & STORM SEWER PACKAGE (WATER)

Maxxam ID	1. 17.			100971		
Sampling Date				2018/12/17		
COC Number				696646-01-01		
	UNITS	San	Stm	вн3	RDL	QC Batch
Total Phosphorus (P)	ug/L	10000	400	<100	100	5898904
Total Selenium (Se)	ug/L	1000	20	2.8	2.0	5898904
Total Silver (Ag)	ug/L	5000	120	<0.10	0.10	5898904
Total Tin (Sn)	ug/L	5000	-	<1.0	1.0	5898904
Total Titanium (Ti)	ug/L	5000	-	5.4	5.0	5898904
Total Zinc (Zn)	ug/L	2000	40	6.2	5.0	5898904
Semivolatile Organics						
Di-N-butyl phthalate	ug/L	80	15	<2	2	5896960
Bis(2-ethylhexyl)phthalate	ug/L	12	8.8	<2	2	5896960
3,3'-Dichlorobenzidine	ug/L	2	0.8	<0.8	0.8	5896960
Pentachlorophenol	ug/L	5	2	<1	1	5896960
Phenanthrene	ug/L	-	-	<0.2	0.2	5896960
Anthracene	ug/L	-	-	<0.2	0.2	5896960
Fluoranthene	ug/L	-	-	<0.2	0.2	5896960
Pyrene	ug/L	-		<0.2	0.2	5896960
Benzo(a)anthracene	ug/L	-	-	<0.2	0.2	589696
Chrysene	ug/L	-	-	<0.2	0.2	5896960
Benzo(b/j)fluoranthene	ug/L	-	-	<0.2	0.2	5896960
Benzo(k)fluoranthene	ug/L	-	-	<0.2	0.2	5896960
Benzo(a)pyrene	ug/L	-	-	<0.2	0.2	5896960
Indeno(1,2,3-cd)pyrene	ug/L	-	-	<0.2	0.2	589696
Dibenz(a,h)anthracene	ug/L	-	-	<0.2	0.2	589696
Benzo(g,h,i)perylene	ug/L	-	-	<0.2	0.2	5896960
Dibenzo(a,i)pyrene	ug/L	-	-	<0.2	0.2	589696
Benzo(e)pyrene	ug/L	-	-	<0.2	0.2	589696
Perylene	ug/L	-	-	<0.2	0.2	589696
Dibenzo(a,j) acridine	ug/L	-	-	<0.4	0.4	589696
7H-Dibenzo(c,g) Carbazole	ug/L	-	-	<0.4	0.4	589696
1,6-Dinitropyrene	ug/L	-	-	<0.4	0.4	589696
1,3-Dinitropyrene	ug/L	1-1	-	<0.4	0.4	589696
1,8-Dinitropyrene	ug/L	-	-	<0.4	0.4	589696

No Fill Grey

Black

No Exceedance

Exceeds 1 criteria policy/level Exceeds both criteria/levels

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

San,Stm: Toronto Sanitary and Storm Sewer Use By Law Guidelines, respectively. Referenced to Chapter 681

Edward Wong & Associates Inc

Client Project #: 469 HURON ST, TORONTO

Site Location: MA002568

Sampler Initials: JT

TORONTO SANITARY & STORM SEWER PACKAGE (WATER)

Maxxam ID				100971		
Sampling Date				2018/12/17		
COC Number				696646-01-01		
	UNITS	San	Stm	внз	RDL	QC Batch
Calculated Parameters						
Total PAHs (18 PAHs)	ug/L	5	2	<1	1	5892469
Volatile Organics	•	•	•			
Benzene	ug/L	10	2	<0.20	0.20	5889554
Chloroform	ug/L	40	2	<0.20	0.20	5889554
1,2-Dichlorobenzene	ug/L	50	5.6	<0.50	0.50	5889554
1,4-Dichlorobenzene	ug/L	80	6.8	<0.50	0.50	5889554
cis-1,2-Dichloroethylene	ug/L	4000	5.6	<0.50	0.50	5889554
trans-1,3-Dichloropropene	ug/L	140	5.6	<0.40	0.40	5889554
Ethylbenzene	ug/L	160	2	<0.20	0.20	5889554
Methylene Chloride(Dichloromethane)	ug/L	2000	5.2	<2.0	2.0	5889554
1,1,2,2-Tetrachloroethane	ug/L	1400	17	<0.50	0.50	5889554
Tetrachloroethylene	ug/L	1000	4.4	<0.20	0.20	5889554
Toluene	ug/L	16	2	0.72	0.20	5889554
Trichloroethylene	ug/L	400	7.6	<0.20	0.20	5889554
p+m-Xylene	ug/L	1400	4.4	<0.20	0.20	5889554
o-Xylene	ug/L	1400	4.4	<0.20	0.20	5889554
Total Xylenes	ug/L	1400	4.4	<0.20	0.20	5889554
PCBs						
Total PCB	ug/L	1	0.4	<0.05	0.05	5894872
Microbiological						
Escherichia coli	CFU/100mL	je j	200	<10	10	5893343
Surrogate Recovery (%)						
2,4,6-Tribromophenol	%	-	-1	20	N/A	5896960
2-Fluorobiphenyl	%	-	-	71	N/A	5896960
D14-Terphenyl (FS)	%	-	-	84	N/A	5896960
D5-Nitrobenzene	%	-	-	70	N/A	5896960
D8-Acenaphthylene	%	-	-	74	N/A	5896960
Decachlorobiphenyl	%	-	-	78	N/A	5894872
4-Bromofluorobenzene	%	-	-	87	N/A	5889554

No Fill

Grey

Black

Exceeds 1 criteria policy/level

Exceeds both criteria/levels

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

San,Stm: Toronto Sanitary and Storm Sewer Use By Law Guidelines, respectively. Referenced to Chapter

Edward Wong & Associates Inc

Client Project #: 469 HURON ST, TORONTO

Site Location: MA002568

Sampler Initials: JT

TORONTO SANITARY & STORM SEWER PACKAGE (WATER)

Maxxam ID	1.15.2.5			100971		
Sampling Date				2018/12/17		
COC Number	27,77			696646-01-01		
	UNITS	San	Stm	вн3	RDL	QC Batch
D4-1,2-Dichloroethane	%	-	T -	116	N/A	5889554
D8-Toluene	%	-	-	95	N/A	5889554

No Fill Grey

Black

No Exceedance

Exceeds 1 criteria policy/level

Exceeds both criteria/levels

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

San,Stm: Toronto Sanitary and Storm Sewer Use By Law Guidelines, respectively. Referenced to Chapter

681

Edward Wong & Associates Inc

Client Project #: 469 HURON ST, TORONTO

Site Location: MA002568 Sampler Initials: JT

RESULTS OF ANALYSES OF WATER

Maxxam ID		100971	100971		
Sampling Date		2018/12/17	2018/12/17		
COC Number		696646-01-01	696646-01-01		
	UNITS	внз	BH3 Lab-Dup	RDL	QC Batch
Inorganics					
Dissolved Sulphate (SO4)	mg/L	47	47	1.0	5894885
RDL = Reportable Detection QC Batch = Quality Control E		·			

Edward Wong & Associates Inc

Client Project #: 469 HURON ST, TORONTO

Site Location: MA002568

Sampler Initials: JT

O.REG 153 METALS & INORGANICS PKG (WTR)

Maxxam ID				100971	100971		
Sampling Date				2018/12/17	2018/12/17		
COC Number			- 1	696646-01-01	696646-01-01		
	UNITS	San	Stm	внз	BH3 Lab-Dup	RDL	QC Batch
Inorganics							
WAD Cyanide (Free)	ug/L	1-1	-	<1	N/A	1	5894029
Dissolved Chloride (Cl-)	mg/L	-	-	90	90	1.0	5894899
Metals							
Mercury (Hg)	ug/L	10	0.4	<0.1	<0.1	0.1	5901230
Dissolved Antimony (Sb)	ug/L	5000	-	1.4	N/A	0.50	5895010
Dissolved Arsenic (As)	ug/L	1000	20	2.4	N/A	1.0	5895010
Dissolved Barium (Ba)	ug/L	-	-	160	N/A	2.0	5895010
Dissolved Beryllium (Be)	ug/L	-	-	<0.50	N/A	0.50	5895010
Dissolved Boron (B)	ug/L	-	-	83	N/A	10	5895010
Dissolved Cadmium (Cd)	ug/L	700	8	<0.10	N/A	0.10	5895010
Dissolved Chromium (Cr)	ug/L	4000	80	<5.0	N/A	5.0	5895010
Dissolved Cobalt (Co)	ug/L	5000	-	<0.50	N/A	0.50	5895010
Dissolved Copper (Cu)	ug/L	2000	40	<1.0	N/A	1.0	5895010
Dissolved Lead (Pb)	ug/L	1000	120	<0.50	N/A	0.50	5895010
Dissolved Molybdenum (Mo)	ug/L	5000	-	4.1	N/A	0.50	5895010
Dissolved Nickel (Ni)	ug/L	2000	80	<1.0	N/A	1.0	5895010
Dissolved Selenium (Se)	ug/L	1000	20	<2.0	N/A	2.0	5895010
Dissolved Silver (Ag)	ug/L	5000	120	<0.10	N/A	0.10	589501
Dissolved Sodium (Na)	ug/L	-	-	99000	N/A	100	589501
Dissolved Thallium (TI)	ug/L	-	-	<0.050	N/A	0.050	589501
Dissolved Uranium (U)	ug/L	1-	-	1.1	N/A	0.10	589501
Dissolved Vanadium (V)	ug/L	-	-	1.1	N/A	0.50	589501
Dissolved Zinc (Zn)	ug/L	2000	40	5.7	N/A	5.0	589501

No Fill

No Exceedance

Grey Black Exceeds 1 criteria policy/level Exceeds both criteria/levels

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

Lab-Dup = Laboratory Initiated Duplicate

San,Stm: Toronto Sanitary and Storm Sewer Use By Law Guidelines, respectively. Referenced to

Chapter 681

Edward Wong & Associates Inc

Client Project #: 469 HURON ST, TORONTO

Site Location: MA002568

Sampler Initials: JT

TEST SUMMARY

Maxxam ID: 100971 Sample ID: BH3 Matrix: Water

Collected: 2018/12/17

Shipped:

Received: 2018/12/17

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Sewer Use By-Law Semivolatile Organics	GC/MS	5896960	2018/12/19	2018/12/20	Kathy Horvat
Biochemical Oxygen Demand (BOD)	DO	5894324	2018/12/18	2018/12/23	Nusrat Naz
Chloride by Automated Colourimetry	KONE	5894899	N/A	2018/12/19	Deonarine Ramnarine
Chromium (VI) in Water	IC	5892920	N/A	2018/12/21	Lang Le
Free (WAD) Cyanide	SKAL/CN	5894029	N/A	2018/12/18	Christine Pham
Total Cyanide	SKAL/CN	5894364	2018/12/18	2018/12/18	Christine Pham
Fluoride	ISE	5895291	2018/12/18	2018/12/19	Surinder Rai
Mercury in Water by CVAA	CV/AA	5900659	2018/12/21	2018/12/21	Medhat Nasr
Mercury	CV/AA	5901230	2018/12/21	2018/12/21	Medhat Nasr
Dissolved Metals by ICPMS	ICP/MS	5895010	N/A	2018/12/21	Arefa Dabhad
Total Metals Analysis by ICPMS	ICP/MS	5898904	N/A	2018/12/20	Thao Nguyen
E.coli, (CFU/100mL)	PL	5893343	N/A	2018/12/17	Sirimathie Aluthwala
Total Nonylphenol in Liquids by HPLC	LC/FLU	5900939	2018/12/21	2018/12/22	Tonghui (Jenny) Chen
Nonylphenol Ethoxylates in Liquids: HPLC	LC/FLU	5900941	2018/12/21	2018/12/22	Tonghui (Jenny) Chen
Animal and Vegetable Oil and Grease	BAL	5891841	N/A	2018/12/20	Automated Statchk
Total Oil and Grease	BAL	5899489	2018/12/20	2018/12/20	Mansoor Ahmed
Polychlorinated Biphenyl in Water	GC/ECD	5894872	2018/12/18	2018/12/19	Svitlana Shaula
pH	AT	5895295	N/A	2018/12/19	Surinder Rai
Phenols (4AAP)	TECH/PHEN	5896525	N/A	2018/12/20	Bramdeo Motiram
Sulphate by Automated Colourimetry	KONE	5894885	N/A	2018/12/19	Deonarine Ramnarine
Total Kjeldahl Nitrogen in Water	SKAL	5895567	2018/12/18	2018/12/19	Rajni Tyagi
Total PAHs	CALC	5892469	N/A	2018/12/20	Automated Statchk
Mineral/Synthetic O & G (TPH Heavy Oil)	BAL	5899493	2018/12/20	2018/12/20	Mansoor Ahmed
Total Suspended Solids	BAL	5894051	2018/12/18	2018/12/19	Mandeep Kaur
Volatile Organic Compounds in Water	GC/MS	5889554	N/A	2018/12/20	Blair Gannon

Maxxam ID: IOO971 Dup

Sample ID: BH3 Matrix: Water

Collected: 2018/12/17

Shipped:

Received: 2018/12/17

Test Description	Instrumentation	Batch	Extracted	Date Analyzed	Analyst
Chloride by Automated Colourimetry	KONE	5894899	N/A	2018/12/19	Deonarine Ramnarine
Mercury	CV/AA	5901230	2018/12/21	2018/12/21	Medhat Nasr
Sulphate by Automated Colourimetry	KONE	5894885	N/A	2018/12/19	Deonarine Ramnarine

Edward Wong & Associates Inc

Client Project #: 469 HURON ST, TORONTO

Site Location: MA002568

Sampler Initials: JT

GENERAL COMMENTS

QUALITY ASSURANCE REPORT

Edward Wong & Associates Inc Client Project #: 469 HURON ST, TORONTO

Site Location: MA002568 Sampler Initials: JT

Parameter Date % Recovery CLimits Value UNISTATION 4-Bonnontochenchen 2018/12/19 36 70 - 130 97 70 - 130 91 % Dest-Abloncothane 2018/12/19 112 70 - 130 107 70 - 130 91 % Dest-Abloncothane 2018/12/19 126 70 - 130 107 70 - 130 95 % Dest-Abloncophenyl 2018/12/19 186 60 - 130 87 60 - 130 86 % 2.4.6-Thromophenyl 2018/12/20 18 90 - 130 87 80 - 130 87 80 - 130 87 88 89 80 - 130 89 88 89 80 - 130 89 88 89 89 90 - 130 89 88 89 80 - 130 91 89 88 90 - 130 91 91 88 91 91 91 88 92 91 91 92 88 93 93 93 93 93				Matrix Spike	Spike	SPIKED	SPIKED BLANK	Method Blank	Slank	RPD	0	QC Sta	QC Standard
4 Bennonfluorobenzene 2018/12/19 96 70-130 97 70-130 91 % DB-7.Delinforcethane 2018/12/19 111 70-130 107 70-130 112 % DB-7.Delinforcethane 2018/12/19 116 70-130 107 70-130 86 % DB-7.Delinforcethane 2018/12/19 189 60-130 87 60-130 86 % 2.4.G-Tribromophenol 2018/12/20 184 30-130 82 80-130 89 % 2.4.G-Tribromophenol 2018/12/20 183 30-130 82 30-130 89 % D14-Techbenyl (5) 2018/12/20 113 30-130 82 30-130 89 % D14-Techbenyl (5) 2018/12/20 114 30-130 82 30-130 89 % D2-Nichbenzene 2018/12/19 107 70-130 89 30-130 89 % D1-1-Techbenzene 2018/12/19 107 70-130 89	QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	UNITS	Value (%)	QC Limits	% Recovery QC Limits	QC Limits
DB-Tolchlorocethane 2018/12/19 111 70 - 130 107 70 - 130 112 % DB-Tolchlorocethane 2018/12/19 136 60 - 130 105 70 - 130 59 % 2.4.6Triboronophenol 2018/12/19 19 10 - 130 91 10 - 130 86 % 2.4.6Triboronophenol 2018/12/20 133 30 - 130 87 30 - 130 88 % D14-Terphenyl (\$5) 2018/12/20 133 30 - 130 82 30 - 130 89 % D15-Nitrobenzene 2018/12/20 13 30 - 130 82 30 - 130 89 % D2-Nitrobenzene 2018/12/19 40 70 - 130 82 30 - 130 89 % DS-Antrobenzene 2018/12/19 40 70 - 130 82 30 - 130 89 % 1,2,2-Dichlorocethazene 2018/12/19 40 70 - 130 82 70 - 130 6.50 ug/L 1,2,2-Dichlorocethazene 2018/12/19 40	5889554	4-Bromofluorobenzene	2018/12/19	96	70 - 130	97	70 - 130	91	%				
Des-Toluene 2018/12/19 126 70 - 130 105 70 - 130 95 % Decarchlorobiphenyl 2018/12/19 89 60 - 130 87 60 - 130 86 % 2.46 - Thromobhenol 2018/12/20 149 10 - 130 91 10 - 130 86 % 2.46 - Thromobhenol 2018/12/20 149 30 - 130 82 30 - 130 89 % DEAT-Terphenyl (FS) 2018/12/20 143 30 - 130 82 30 - 130 84 % DS-Acteraphthylerenene 2018/12/20 14 30 - 130 82 30 - 130 89 % DS-Acteraphthylerenene 2018/12/19 107 70 - 130 82 30 - 130 89 % 1,2. Dichlorobenzene 2018/12/19 94 70 - 130 92 70 - 130 60.50 ug/L 1,2. Dichlorobenzene 2018/12/19 94 70 - 130 92 70 - 130 60.50 ug/L 1,2. Dichlorobenzene 2018/12/19 97 </td <td>5889554</td> <td>D4-1,2-Dichloroethane</td> <td>2018/12/19</td> <td>111</td> <td>70 - 130</td> <td>107</td> <td>70 - 130</td> <td>112</td> <td>%</td> <td></td> <td>^^</td> <td></td> <td></td>	5889554	D4-1,2-Dichloroethane	2018/12/19	111	70 - 130	107	70 - 130	112	%		^^		
Lyachironobjeenyl 2018/12/12 89 60-130 87 60-130 86 % 2.46-Tirkomophenol 2018/12/20 63 10-130 59 30-130 89 % 2.Flucorophenyl 2018/12/20 63 30-130 89 % % D14-Terphenyl (FS) 2018/12/20 13 30-130 89 % % D5-Mitrobenzene 2018/12/20 115 30-130 88 30-130 84 % D6-Arlerphenyl (FS) 2018/12/20 115 30-130 82 30-130 89 % D6-Arlerphenyl (FS) 2018/12/20 14 10-130 93 30-130 89 % D6-Arlerphenyl (FS) 2018/12/19 40 70-130 91 70-130 99 % D6-Archaphthylene 2018/12/19 40 70-130 92 70-130 92 70-130 92 90 % 1.4.2.2-Tertarchlorochenzene 2018/12/19 94 70-130 92 </td <td>5889554</td> <td>D8-Toluene</td> <td>2018/12/19</td> <td>126</td> <td>70 - 130</td> <td>105</td> <td>70 - 130</td> <td>95</td> <td>%</td> <td></td> <td></td> <td></td> <td></td>	5889554	D8-Toluene	2018/12/19	126	70 - 130	105	70 - 130	95	%				
2.4.6-Triblromophenol 2018/12/20 104 10-130 91 10-130 59 % 2-Fluoroniophenyl 2018/12/20 63 30-130 59 30-130 88 2-Fluoroliophenyl 2018/12/20 115 30-130 59 % D5-Mitrobenzene 2018/12/20 115 30-130 93 30-130 89 % D5-Mitrobenzene 2018/12/20 14-0 30-130 93 30-130 99 % 1,1,2,2-Fatrachlorobenzene 2018/12/19 40 70-130 68 30-130 99 % 1,1,2-Dichlorobenzene 2018/12/19 40 70-130 91 70-130 90 % 1,4-Dichlorobenzene 2018/12/19 94 70-130 91 70-130 92 70-130 91 70-130 92 70-130 92 70-130 92 70-130 92 70-130 92 92 70-130 92 92 70-130 92 92 92	5894872	Decachlorobiphenyl	2018/12/19	68	60 - 130	87	60 - 130	98	%				
2-Fluorobiphenyl 2018/12/20 63 30-130 59 30-130 62 % D54-Terphenyl (FS) 2018/12/20 83 30-130 82 30-130 84 % D5-Altrobenzene 2018/12/20 74 30-130 82 30-130 89 % D6-Arcraphthylene 2018/12/20 74 30-130 68 30-130 89 % 1,1.2,2-Tetrachlorobenzene 2018/12/19 70-130 100 70-130 60-50 ug/L 1,2-Dichlorobenzene 2018/12/19 94 70-130 92 70-130 60-50 ug/L 1,4-Dichlorobenzene 2018/12/19 95 70-130 92	2896960	2,4,6-Tribromophenol	2018/12/20	104	10 - 130	91	10 - 130	59	%				
D5-Nitrobenvi (FS) 2018/12/20 115 30 - 130 82 30 - 130 84 % D5-Nitrobenzene D05-Nitrobenzene 2018/12/20 115 30 - 130 83 30 - 130 89 % 1,1,2,2-Terachlorochtane 2018/12/20 74 30 - 130 66 99 % 1,1,2,2-Terachlorochtane 2018/12/19 94 70 - 130 60.50 ug/L 1,2,2-Dichlorobenzene 2018/12/19 94 70 - 130 92 70 - 130 60.50 ug/L 1,4-Dichlorochtylene 2018/12/19 94 70 - 130 92 70 - 130 60.50 ug/L Ethylenzene 2018/12/19 96 70 - 130 93 70 - 130 60.20 ug/L Ethylenzene 2018/12/19 97 70 - 130 60.20 ug/L Ethylenzene 2018/12/19 97 70 - 130 60.20 ug/L Ethylenzene 2018/12/19 97 70 - 130 60.20 ug/L Ethylenzene	2896960	2-Fluorobiphenyl	2018/12/20	63	30 - 130	59	30 - 130	62	%				
DS-Antirobenzene 2018/12/20 74 30-130 93 30-130 99 % DS-Accenaphthylene 2018/12/20 74 30-130 68 30-130 69 % 1.1,12,2-Tertachlorocethane 2018/12/19 107 70-130 60-50 ug/L 1.1,2,2-Tertachlorocethane 2018/12/19 94 70-130 92 70-130 <0.50	2896960	D14-Terphenyl (FS)	2018/12/20	83	30 - 130	82	30 - 130	84	%				
D8-Acenaphthylene 2018/12/120 74 30 - 130 68 30 - 130 69 % 1,1,2,2-Tetrachlorocethane 2018/12/19 107 70 - 130 100 70 - 130 6-050 ug/L 1,2-Dichlorobenzene 2018/12/19 94 70 - 130 92 70 - 130 -6-050 ug/L 1,4-Dichlorobenzene 2018/12/19 94 70 - 130 93 70 - 130 -6-050 ug/L Behzene 2018/12/19 98 70 - 130 93 70 - 130 -6-050 ug/L Chloroform 2018/12/19 98 70 - 130 95 70 - 130 -6-050 ug/L Chloroform 2018/12/19 98 70 - 130 95 70 - 130 -6-050 ug/L Chloroform 2018/12/19 93 70 - 130 95 70 - 130 -6-050 ug/L Chloroform 2018/12/19 93 70 - 130 90 70 - 130 -6-050 ug/L Methylene Chloride(Dichloromethane) 2018/12/19	2896960	D5-Nitrobenzene	2018/12/20	115	30 - 130	93	30 - 130	66	%				
1,1,2,2-Tetrachloroethane 2018/12/19 107 70 - 130 70 - 130 40.50 ug/L 1,2-Dichlorobenzene 2018/12/19 94 70 - 130 91 70 - 130 40.50 ug/L 1,4-Dichlorobenzene 2018/12/19 94 70 - 130 92 70 - 130 40.50 ug/L Benzene 2018/12/19 96 70 - 130 93 70 - 130 40.50 ug/L cicl-12-Olchlorocethylene 2018/12/19 98 70 - 130 90.20 ug/L cicl-12-Olchlorocethylene 2018/12/19 93 70 - 130 40.20 ug/L Methylencene 2018/12/19 93 70 - 130 90 70 - 130 40.70 O-Xylene 2018/12/19 92 70 - 130 92 70 - 130 40.70 10g/L Phm-Xylene 2018/12/19 95 70 - 130 92 70 - 130 40.20 ug/L Total Supernede Chloride(Dichloromethane) 2018/12/19 95 70 - 130 40.20 ug/L	2896960	D8-Acenaphthylene	2018/12/20	74	30 - 130	89	30 - 130	69	%		9		
1,2-Dichlorobenzene 2018/12/19 94 70-130 91 70-130 <0.50 ug/L 1,4-Dichlorobenzene 2018/12/19 94 70-130 92 70-130 <0.50	5889554	1,1,2,2-Tetrachloroethane	2018/12/19	107	70 - 130	100	70 - 130	<0.50	ng/L	NC	30		
1,4-Dichlorobenzene 2018/12/19 94 70-130 92 70-130 <0.50 ug/L Benzene 2018/12/19 96 70-130 93 70-130 <0.20	5889554	1,2-Dichlorobenzene	2018/12/19	94	70 - 130	91	70 - 130	<0.50	ng/L	NC	30		
Benzene 2018/12/19 96 70 - 130 93 70 - 130 <0.20 ug/L Chloroform 2018/12/19 98 70 - 130 95 70 - 130 60.20 ug/L Chloroform 2018/12/19 100 70 - 130 95 70 - 130 60.20 ug/L Ethylbenzene 2018/12/19 100 70 - 130 95 70 - 130 60.20 ug/L Methylene Chloride[Dichloromethane] 2018/12/19 93 70 - 130 90 70 - 130 60.20 ug/L 0 -3v/lene 2018/12/19 92 70 - 130 <0.20	5889554	1,4-Dichlorobenzene	2018/12/19	94	70 - 130	62	70 - 130	<0.50	ng/L	NC	30		
Chloroform 2018/12/19 98 70-130 95 70-130 c0.20 ug/L cis-1,2-Dichloroethylene 2018/12/19 100 70-130 95 70-130 c0.20 ug/L Ethylbenzene 2018/12/19 100 70-130 95 70-130 c0.50 ug/L Methylene Chloride(Dichloromethane) 2018/12/19 92 70-130 c0.20 ug/L p+m-Xylene 2018/12/19 92 70-130 c0.20 ug/L p+m-Xylene 2018/12/19 95 70-130 c0.20 ug/L Tetrachloroethylene 2018/12/19 95 70-130 c0.20 ug/L Toluene 2018/12/19 NC 70-130 92 70-130 c0.20 ug/L Toluene 2018/12/19 NC 70-130 92 70-130 c0.20 ug/L Tolal Xylenes 2018/12/19 NC 70-130 89 70-130 c0.20 ug/L Total Xylenes 2018/12/19 NC	5889554	Benzene	2018/12/19	96	70 - 130	63	70 - 130	<0.20	ng/L	1.7	30		
cis-1,2-Dichloroethylene 2018/12/19 100 70-130 95 70-130 c0.50 ug/L Ethylbenzene 2018/12/19 93 70-130 91 70-130 c0.50 ug/L Ethylbenzene 2018/12/19 93 70-130 91 70-130 c0.20 ug/L o-Xylene 2018/12/19 92 70-130 92 70-130 c2.0 ug/L p+m-Xylene 2018/12/19 95 70-130 92 70-130 c0.20 ug/L Tetrachloroethylene 2018/12/19 89 70-130 c0.20 ug/L Total Xylenes 2018/12/19 NC 70-130 89 70-130 c0.20 ug/L Total Xylenes 2018/12/19 NC 70-130 89 70-130 c0.20 ug/L Total Xylenes 2018/12/19 NC 70-130 88 70-130 c0.20 ug/L Total Xylenes 2018/12/19 105 80-120 107 70-130 c0.20	5889554	Chloroform	2018/12/19	86	70 - 130	56	70 - 130	<0.20	ng/L	NC	30		
Ethylbenzene 2018/12/19 93 70-130 91 70-130 c0.20 ug/L Methylbenzene Methylbenzene 2018/12/19 108 70-130 102 70-130 c2.0 ug/L o-xylene 20-xylene 2018/12/19 95 70-130 92 70-130 c0.20 ug/L p+m-Xylene 2018/12/19 95 70-130 92 70-130 c0.20 ug/L Totlene 2018/12/19 NC 70-130 92 70-130 c0.20 ug/L Total xylenes 2018/12/19 NC 70-130 92 70-130 c0.20 ug/L Total xylenes 2018/12/19 NC 70-130 92 70-130 c0.20 ug/L Total xylenes 2018/12/19 NC 70-130 88 70-130 c0.20 ug/L Trichloroethylene 2018/12/19 1105 80-120 70-130 c0.20 ug/L Trichloroethylene 2018/12/19 105 80-120 <td>5889554</td> <td>cis-1,2-Dichloroethylene</td> <td>2018/12/19</td> <td>100</td> <td>70 - 130</td> <td>95</td> <td>70 - 130</td> <td><0.50</td> <td>ng/L</td> <td>NC</td> <td>30</td> <td></td> <td></td>	5889554	cis-1,2-Dichloroethylene	2018/12/19	100	70 - 130	95	70 - 130	<0.50	ng/L	NC	30		
Methylene Chloride(Dichloromethane) 2018/12/19 108 70 - 130 102 70 - 130 <2.0 ug/L o-Xylene 2018/12/19 92 70 - 130 92 70 - 130 <0.20	5889554	Ethylbenzene	2018/12/19	93	70 - 130	91	70 - 130	<0.20	ng/L	0.20	30		
o-Xylene 2018/12/19 92 70-130 92 70-130 60.20 ug/L p+m-Xylene 2018/12/19 95 70-130 92 70-130 <0.20	5889554	Methylene Chloride(Dichloromethane)	2018/12/19	108	70 - 130	102	70 - 130	<2.0	ng/L	NC	30		
p+m-Xylene 2018/12/19 95 70-130 92 70-130 c0.20 ug/L Tetrachloroethylene 2018/12/19 89 70-130 89 70-130 c0.20 ug/L Toluene 2018/12/19 NC 70-130 92 70-130 c0.20 ug/L Total Xylenes 2018/12/19 NC 70-130 88 70-130 ug/L ug/L Trichloroethylene 2018/12/19 112 70-130 88 70-130 c0.20 ug/L Chromium (VI) 2018/12/19 105 80-120 107 80-120 c0.50 ug/L WAD Cyanide (Free) 2018/12/18 109 80-120 107 80-120 c1.0 mg/L Total Suspended Solids 2018/12/19 105 80-120 104 80-120 c1.0 mg/L Total Cyanide (CN) 2018/12/19 105 80-120 0.050 ug/L 107 Total Cyanide (CN) 2018/12/19 105 80-120 0.050	5889554	o-Xylene	2018/12/19	92	70 - 130	92	70 - 130	<0.20	1/Bn	1.5	30		
Tetrachloroethylene 2018/12/19 89 70-130 89 70-130 80-10 70-130 40-10 40-10 Tolluene 2018/12/19 NC 70-130 92 70-130 60.20 ug/L Tolluene 2018/12/19 NC 70-130 88 70-130 ug/L ug/L Trichloroethylene 2018/12/19 112 70-130 88 70-130 ug/L ug/L Chromium (VI) 2018/12/19 90 70-130 89 70-130 c0.20 ug/L WAD Cyanide (Free) 2018/12/18 105 80-120 107 80-120 c0.50 ug/L WAD Cyanide (Free) 2018/12/18 109 80-120 103 80-120 c0.50 ug/L Total Suspended Solids 2018/12/18 105 80-120 104 80-120 c10 mg/L Total BOD 2018/12/18 105 80-120 104 80-120 c0.0050 mg/L Total PCB 2018/12/19 <td< td=""><td>5889554</td><td>p+m-Xylene</td><td>2018/12/19</td><td>95</td><td>70 - 130</td><td>92</td><td>70 - 130</td><td><0.20</td><td>ng/L</td><td>0.98</td><td>30</td><td></td><td></td></td<>	5889554	p+m-Xylene	2018/12/19	95	70 - 130	92	70 - 130	<0.20	ng/L	0.98	30		
Tollenee 2018/12/19 NC 70-130 92 70-130 <0.20 ug/L Total Xylenes 2018/12/19 112 70-130 88 70-130 ug/L Trichloroethylene 2018/12/19 112 70-130 88 70-130 ug/L Trichloroethylene 2018/12/19 90 70-130 89 70-130 ug/L Chromium (VI) 2018/12/19 90 70-130 89 70-130 ug/L WAD Cyanide (Free) 2018/12/18 105 80-120 107 80-120 c0.50 ug/L Total Suspended Solids 2018/12/18 109 80-120 103 80-120 c1.0 mg/L Total BOD 2018/12/19 105 80-120 104 80-120 c0.050 mg/L Total Cyanide (CN) 2018/12/18 105 80-130 c0.050 ug/L c1.0 Dissolved Sulphate (SO4) 2018/12/19 NC 75-125 105 80-120 c1.0 d0.050 ug/L<	5889554	Tetrachloroethylene	2018/12/19	89	70 - 130	68	70 - 130	<0.20	ng/L	NC	30		
Total Xylenes 2018/12/19 112 70 - 130 88 70 - 130 40.20 ug/L trans-1,3-Dichloropenee 2018/12/19 112 70 - 130 88 70 - 130 40.40 ug/L Trichloroethylene 2018/12/19 105 80 - 120 70 - 130 40.20 ug/L Chromium (VI) 2018/12/18 105 80 - 120 107 80 - 120 ug/L Total Suspended Solids 2018/12/18 109 80 - 120 103 80 - 120 <10	5889554	Toluene	2018/12/19	NC	70 - 130	92	70 - 130	<0.20	ng/L	1.2	30		
trans-1,3-Dichloropropene 2018/12/19 112 70-130 88 70-130 co.40 ug/L Trichloroethylene 2018/12/19 90 70-130 89 70-130 co.20 ug/L Chromium (VI) 2018/12/19 105 80-120 107 80-120 co.50 ug/L WAD Cyanide (Free) 2018/12/18 109 80-120 103 80-120 co.50 ug/L Total Suspended Solids 2018/12/19 2018/12/19 2018/12/19 mg/L co.05 mg/L Total BOD Total BOD co.130 co.050 mg/L Total Cyanide (CN) 2018/12/18 105 80-120 co.050 mg/L Total PCB 2018/12/19 NC 75-125 105 co.05 ug/L Dissolved Sulphate (SO4) 2018/12/19 NC 75-125 105 co.05 ug/L	5889554	Total Xylenes	2018/12/19					<0.20	ng/L	1.2	30		
Trichloroethylene 2018/12/19 90 70-130 89 70-130 60.20 ug/L Chromium (VI) 2018/12/21 105 80-120 107 80-120 40.50 ug/L WAD Cyanide (Free) 2018/12/18 109 80-120 103 80-120 <1	5889554	trans-1,3-Dichloropropene	2018/12/19	112	70 - 130	88	70 - 130	<0.40	ng/L	NC	30		
Chromium (VI) 2018/12/21 105 80 - 120 40 - 120	5889554	Trichloroethylene	2018/12/19	06	70 - 130	68	70 - 130	<0.20	ng/L	NC	30		
WAD Cyanide (Free) 2018/12/18 109 80 - 120 103 80 - 120 <1 ug/L Total Suspended Solids 2018/12/19	5892920	Chromium (VI)	2018/12/21	105	80 - 120	107	80 - 120	<0.50	ng/L	NC	20		
Total Suspended Solids 2018/12/19 < 100 mg/L < 100 mg/L Total BOD Total Cyanide (CN) 2018/12/18 105 80 - 120 104 80 - 120 < 20.0050	5894029	WAD Cyanide (Free)	2018/12/18	109	80 - 120	103	80 - 120	<1	ng/L	NC	20		
Total BOD 2018/12/23 80 - 120 104 80 - 120 <2 mg/L Total Cyanide (CN) 2018/12/18 105 80 - 120 104 80 - 120 <0.0050	5894051	Total Suspended Solids	2018/12/19				7	<10	mg/L	NC	25	97	85 - 115
Total Cyanide (CN) 2018/12/18 105 80 - 120 104 80 - 120 <0.0050 mg/L Total PCB 2018/12/19 103 60 - 130 88 60 - 130 <0.05	5894324	Total BOD	2018/12/23				1	<2	mg/L	9.8	30	107	80 - 120
Total PCB 2018/12/19 103 60 - 130 88 60 - 130 vg/L Dissolved Sulphate (SO4) 2018/12/19 NC 75 - 125 105 80 - 120 <1.0	5894364	Total Cyanide (CN)	2018/12/18	105	80 - 120	104	80 - 120	<0.0050	mg/L	NC	20		
Dissolved Sulphate (SO4) 2018/12/19 NC 75-125 105 80-120 <1.0 mg/L	5894872	Total PCB	2018/12/19	103	60 - 130	88	60 - 130	<0.05	ng/L	NC	40		
1 10 10 10 10 10 10 10 10 10 10 10 10 10	5894885	Dissolved Sulphate (SO4)	2018/12/19	NC	75 - 125	105	80 - 120	<1.0	mg/L	0.33	20		
Dissolved Chloride (CI-) 2018/12/19 NC 80 - 120 102 80 - 120 <1.0 mg/L	5894899	Dissolved Chloride (CI-)	2018/12/19	NC	80 - 120	102	80 - 120	<1.0	mg/L	0.62	20		

QUALITY ASSURANCE REPORT(CONT'D)

Edward Wong & Associates Inc Client Project #: 469 HURON ST, TORONTO

Site Location: MA002568 Sampler Initials: JT

			Matrix Spike	Spike	SPIKED BLANK	SLANK	Method Blank	Blank	RPD	0	QC Standard	ndard
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	UNITS	Value (%)	QC Limits	QC Limits Recovery QC Limits	QC Limits
5895010	Dissolved Antimony (Sb)	2018/12/21	120	80 - 120	105	80 - 120	<0.50	ng/L	NC	20		
5895010	Dissolved Arsenic (As)	2018/12/21	113	80 - 120	102	80 - 120	<1.0	ng/L	NC	20		
5895010	Dissolved Barium (Ba)	2018/12/21	114	80 - 120	100	80 - 120	<2.0	ng/L	0.28	20		
5895010	Dissolved Beryllium (Be)	2018/12/21	108	80 - 120	66	80 - 120	<0.50	ng/L	NC	20		
5895010	Dissolved Boron (B)	2018/12/21	104	80 - 120	100	80 - 120	<10	ng/L	1.8	20		
5895010	Dissolved Cadmium (Cd)	2018/12/21	116	80 - 120	103	80 - 120	<0.10	1/8n	NC	20		
5895010	Dissolved Chromium (Cr)	2018/12/21	106	80 - 120	97	80 - 120	<5.0	ng/L	NC	20		
5895010	Dissolved Cobalt (Co)	2018/12/21	110	80 - 120	101	80 - 120	<0.50	ng/L	NC	20		
5895010	Dissolved Copper (Cu)	2018/12/21	116	80 - 120	104	80 - 120	<1.0	7/8n	20	20		
5895010	Dissolved Lead (Pb)	2018/12/21	112	80 - 120	100	80 - 120	<0.50	1/8n	NC	20		
5895010	Dissolved Molybdenum (Mo)	2018/12/21	115	80 - 120	66	80 - 120	<0.50	ng/L	1.6	20		
5895010	Dissolved Nickel (Ni)	2018/12/21	106	80 - 120	86	80 - 120	<1.0	1/8n	16	20		
5895010	Dissolved Selenium (Se)	2018/12/21	112	80 - 120	103	80 - 120	<2.0	ng/L	NC	20		
5895010	Dissolved Silver (Ag)	2018/12/21	54 (1)	80 - 120	86	80 - 120	<0.10	ng/L	NC	20		
5895010	Dissolved Sodium (Na)	2018/12/21	NC	80 - 120	102	80 - 120	<100	ng/L	3.4	20		
5895010	Dissolved Thallium (TI)	2018/12/21	112	80 - 120	98	80 - 120	<0.050	ng/L	NC	20		
5895010	Dissolved Uranium (U)	2018/12/21	111	80 - 120	101	80 - 120	<0.10	ng/L	1.5	20		
5895010	Dissolved Vanadium (V)	2018/12/21	109	80 - 120	97	80 - 120	<0.50	ng/L	0	20		
5895010	Dissolved Zinc (Zn)	2018/12/21	111	80 - 120	101	80 - 120	<5.0	ng/L	NC	20		
5895291	Fluoride (F-)	2018/12/19	102	80 - 120	105	80 - 120	<0.10	mg/L	4.2	20		
5895295	рН	2018/12/19			102	98 - 103			0.59	N/A		
5895567	Total Kjeldahl Nitrogen (TKN)	2018/12/19	NC	80 - 120	100	80 - 120	<0.10	mg/L	5.6	20	97	80 - 120
5896525	Phenols-4AAP	2018/12/19	66	80 - 120	102	80 - 120	<0.0010	mg/L	NC	20		
2896960	1,3-Dinitropyrene	2018/12/20	11(1)	30 - 130	70	30 - 130	<0.4	ng/L	NC	40		
2896960	1,6-Dinitropyrene	2018/12/20	16(1)	30 - 130	72	30 - 130	<0.4	ng/L	NC	40		
2896960	1,8-Dinitropyrene	2018/12/20	11 (1)	30 - 130	29	30 - 130	<0.4	ng/L	NC	40		
2896960	3,3'-Dichlorobenzidine	2018/12/20	2.0 (2)	30 - 130	75	30 - 130	<0.8	ng/L	NC	40		
2896960	7H-Dibenzo(c,g) Carbazole	2018/12/20	69	30 - 130	60	30 - 130	<0.4	ng/L	NC	40		
2896960	Anthracene	2018/12/20	87	30 - 130	85	30 - 130	<0.2	ng/L	NC	40		
2896960	Benzo(a)anthracene	2018/12/20	80	30 - 130	80	30 - 130	<0.2	ng/L	NC	40		
2896960	Benzo(a)pyrene	2018/12/20	82	30 - 130	88	30 - 130	<0.2	ng/L	NC	40		
2896960	Benzo(b/j)fluoranthene	2018/12/20	91	30 - 130	88	30 - 130	<0.2	ng/L	NC	40		

QUALITY ASSURANCE REPORT(CONT'D)

Edward Wong & Associates Inc Client Project #: 469 HURON ST, TORONTO

Site Location: MA002568 Sampler Initials: JT

			Matrix Spike	Spike	SPIKED BLANK	BLANK	Method Blank	Slank	RPD	0	QC Standard	ndard
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	UNITS	Value (%)	QC Limits	% Recovery	QC Limits
2896960	Benzo(e)pyrene	2018/12/20	91	30 - 130	95	30 - 130	<0.2	1/Bn	NC	40		
2896960	Benzo(g,h,i)perylene	2018/12/20	85	30 - 130	84	30 - 130	<0.2	ng/L	NC	40		
2896960	Benzo(k)fluoranthene	2018/12/20	26	30 - 130	92	30 - 130	<0.2	1/Bn	NC	40		
0969685	Bis(2-ethylhexyl)phthalate	2018/12/20	95	30 - 130	104	30 - 130	2,RDL=2	ng/L	NC	40		
0969685	Chrysene	2018/12/20	103	30 - 130	104	30 - 130	<0.2	ng/L	NC	40		
2896960	Dibenz(a,h)anthracene	2018/12/20	91	30 - 130	68	30 - 130	<0.2	ng/L	NC	40		
2896960	Dibenzo(a,i)pyrene	2018/12/20	79	30 - 130	72	30 - 130	<0.2	ng/L	NC	40		
2896960	Dibenzo(a,j) acridine	2018/12/20	81	30 - 130	79	30 - 130	<0.4	ng/L	NC	40		
0969685	Di-N-butyl phthalate	2018/12/20	101	30 - 130	100	30 - 130	<2	ng/L	NC	40		c
2896960	Fluoranthene	2018/12/20	92	30 - 130	92	30 - 130	<0.2	ng/L	NC	40		
2896960	Indeno(1,2,3-cd)pyrene	2018/12/20	98	30 - 130	98	30 - 130	<0.2	ng/L	NC	40		
2896960	Pentachlorophenol	2018/12/20	86	30 - 130	57	30 - 130	<1	ng/L	NC	40		
5896960	Perylene	2018/12/20	100	30 - 130	101	30 - 130	<0.2	ng/L	NC	40		
2896960	Phenanthrene	2018/12/20	94	30 - 130	87	30 - 130	<0.2	ng/L	NC	40		
2896960	Pyrene	2018/12/20	93	30 - 130	92	30 - 130	<0.2	ng/L	NC	40		
5898904	Total Aluminum (AI)	2018/12/21	26	80 - 120	66	80 - 120	<5.0	ng/L	7.4	20		
5898904	Total Antimony (Sb)	2018/12/21	107	80 - 120	104	80 - 120	<0.50	ng/L	13	20		
5898904	Total Arsenic (As)	2018/12/21	100	80 - 120	100	80 - 120	<1.0	ng/L	18	20		
5898904	Total Cadmium (Cd)	2018/12/21	100	80 - 120	101	80 - 120	<0.10	ng/L	NC	20		
5898904	Total Chromium (Cr)	2018/12/21	94	80 - 120	95	80 - 120	<5.0	ng/L	NC	20		
5898904	Total Cobalt (Co)	2018/12/21	93	80 - 120	96	80 - 120	<0.50	ng/L	NC	20		
5898904	Total Copper (Cu)	2018/12/21	96	80 - 120	6	80 - 120	<1.0	ng/L	3.9	20		
5898904	Total Lead (Pb)	2018/12/21	90	80 - 120	94	80 - 120	<0.50	ng/L	0.45	20		
5898904	Total Manganese (Mn)	2018/12/21	93	80 - 120	95	80 - 120	<2.0	ng/L	4.8	20		
5898904	Total Molybdenum (Mo)	2018/12/21	104	80 - 120	101	80 - 120	<0.50	ng/L	0.55	20		
5898904	Total Nickel (Ni)	2018/12/21	91	80 - 120	95	80 - 120	<1.0	ng/L	0.59	20		
5898904	Total Phosphorus (P)	2018/12/21	105	80 - 120	110	80 - 120	<100	ng/L	2.2	20		
5898904	Total Selenium (Se)	2018/12/21	105	80 - 120	107	80 - 120	<2.0	ug/L	NC	20		
5898904	Total Silver (Ag)	2018/12/21	94	80 - 120	6	80 - 120	<0.10	ng/L	NC	20		
5898904	Total Tin (Sn)	2018/12/21	102	80 - 120	66	80 - 120	<1.0	ng/L	NC	20		
5898904	Total Titanium (Ti)	2018/12/21	92	80 - 120	100	80 - 120	<5.0	ug/L	NC	20		
5898904	Total Zinc (Zn)	2018/12/21	6	80 - 120	101	80 - 120	<5.0	ng/L	11	20		

Report Date: 2018/12/28

QUALITY ASSURANCE REPORT(CONT'D)

Edward Wong & Associates Inc Client Project #: 469 HURON ST, TORONTO

Site Location: MA002568 Sampler Initials: JT

			Matrix Spike	Spike	SPIKED BLANK	BLANK	Method Blank	lank	RPD		QC Standard	ndard
QC Batch	Parameter	Date	% Recovery	QC Limits	Recovery QC Limits % Recovery QC Limits	QC Limits	Value	UNITS	Value (%) QC Limits % Recovery QC Limits	QC Limits	% Recovery	QC Limits
5899489	Total Oil & Grease	2018/12/20			97	85 - 115	<0.50	mg/L	2.8	25		
5899493	Total Oil & Grease Mineral/Synthetic	2018/12/20			92	85 - 115	<0.50	mg/L	4.3	25		
590065	Mercury (Hg)	2018/12/21	26	75 - 125	66	80 - 120	<0.0001	mg/L	NC	20		
5900939	Nonylphenol (Total)	2018/12/22	108	50 - 130	105	50 - 130	<0.001	mg/L	1.2	40		
5900941	Nonylphenol Ethoxylate (Total)	2018/12/22	91	50 - 130	101	50 - 130	<0.005	mg/L	NC	40		
5901230	Mercury (Hg)	2018/12/21	100	75 - 125	86	80 - 120	<0.1	ng/L	NC	20		

N/A = Not Applicable

Duplicate: Paired analysis of a separate portion of the same sample. Used to evaluate the variance in the measurement.

Matrix Spike: A sample to which a known amount of the analyte of interest has been added. Used to evaluate sample matrix interference.

QC Standard: A sample of known concentration prepared by an external agency under stringent conditions. Used as an independent check of method accuracy.

Spiked Blank: A blank matrix sample to which a known amount of the analyte, usually from a second source, has been added. Used to evaluate method accuracy.

Method Blank: A blank matrix containing all reagents used in the analytical procedure. Used to identify laboratory contamination.

Surrogate: A pure or isotopically labeled compound whose behavior mirrors the analytes of interest. Used to evaluate extraction efficiency.

NC (Matrix Spike): The recovery in the matrix spike was not calculated. The relative difference between the concentration in the parent sample and the spike amount was too small to permit a reliable recovery calculation (matrix spike concentration was less than the native sample concentration)

NC (Duplicate RPD): The duplicate RPD was not calculated. The concentration in the sample and/or duplicate was too low to permit a reliable RPD calculation (absolute difference <= 2x RDL)

(1) Recovery or RPD for this parameter is outside control limits. The overall quality control for this analysis meets acceptability criteria.

(2) Some recoveries were below the lower control limits. This may represent a low bias in some results for these flagged analytes.

Edward Wong & Associates Inc

Client Project #: 469 HURON ST, TORONTO

Site Location: MA002568

Sampler Initials: JT

VALIDATION SIGNATURE PAGE

The analytical data and all QC contained in this report were reviewed and validated by the following individual(s).

Sirimathie Aluthwala, Campobello Micro

Maxxam has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per section 5.10.2 of ISO/IEC 17025:2005(E), signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

axxam Analytics International Corporation of a Maxxam Analytics

Page 16 of 16

Appendix F Dewatering Flow Rate Calculations

Project No.: Ma002568c

Location: 409 Huron Street, Toronto

Title: Flow Rate, Construction and Post Construction

Data

Ground Surface (masl) 114.05

Highest W.L. (masl) 112.61 (1 m above highest measured groundwater level)

Base of Excavation (m) 109.4 (1 m below top of P1 slab)
Draw down target (m) 108.4 (during construction)

Aquifer Bottom (masl) 108.4 tip of pump during construction

Draw down target (m) 109.4 (post construction)

Aquifer Bottom (masl) 109.4 invert of weeping tile, post construction

Rainfall (mm) 25 Factor of Safety 1.5

Cefficient of Permeability K = 1.1 x 10-8 m/s

Zone of Inflence, Ro = 3000 s √ k

s= drawdown in borehole = 4.21 m during construction

s= drawdown in borehole = 3.21 m during construction

Ro =1.32 m during construction

Ro =0.96 m post construction

Equivalent Radius of Excavation

rs= √area/ 3.14

Area = 666 m 2

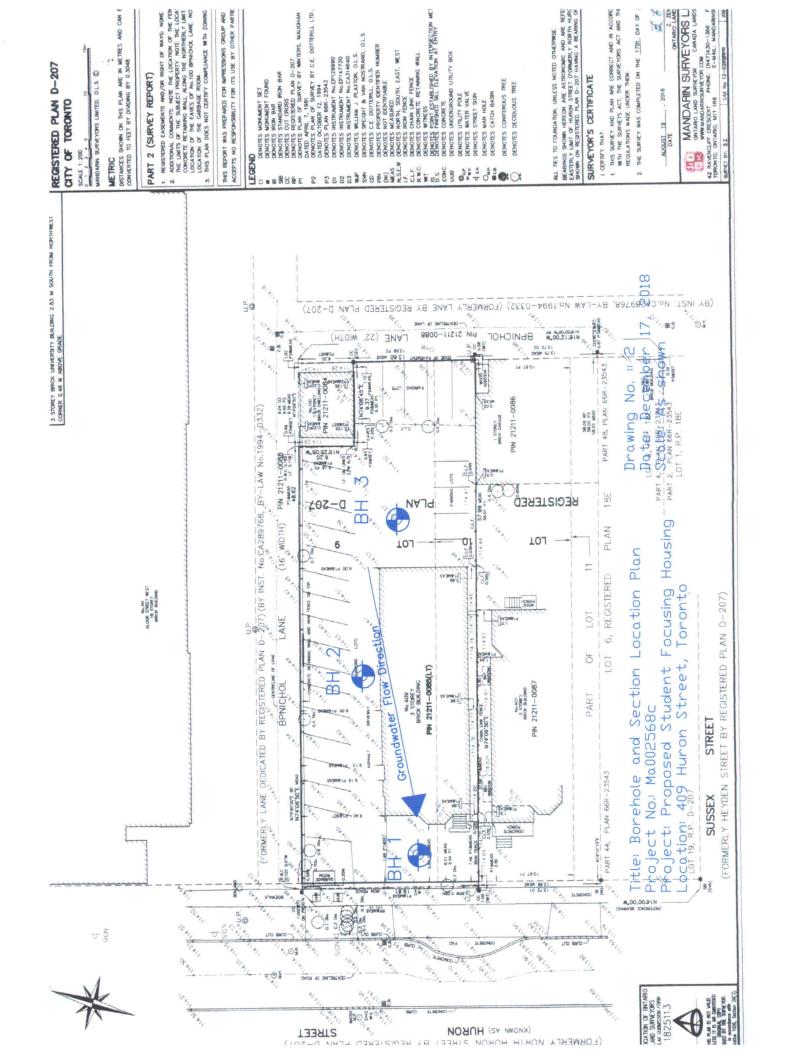
rs = 14.6

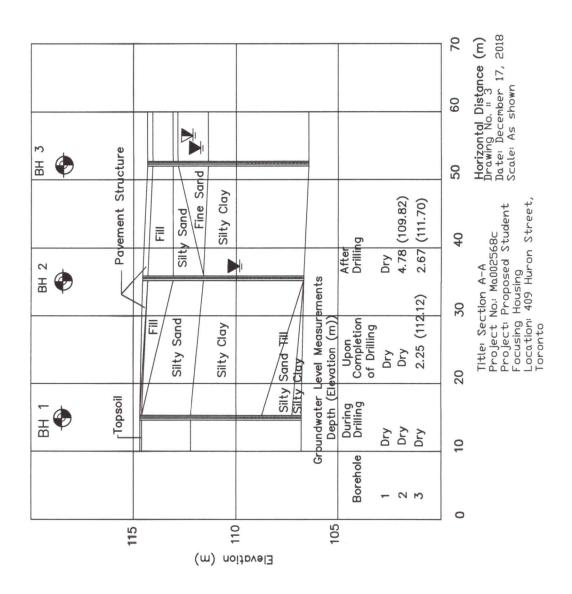
Dewatering Rate, $Q = 3.14 \times K \times (H^2 - h^2)$

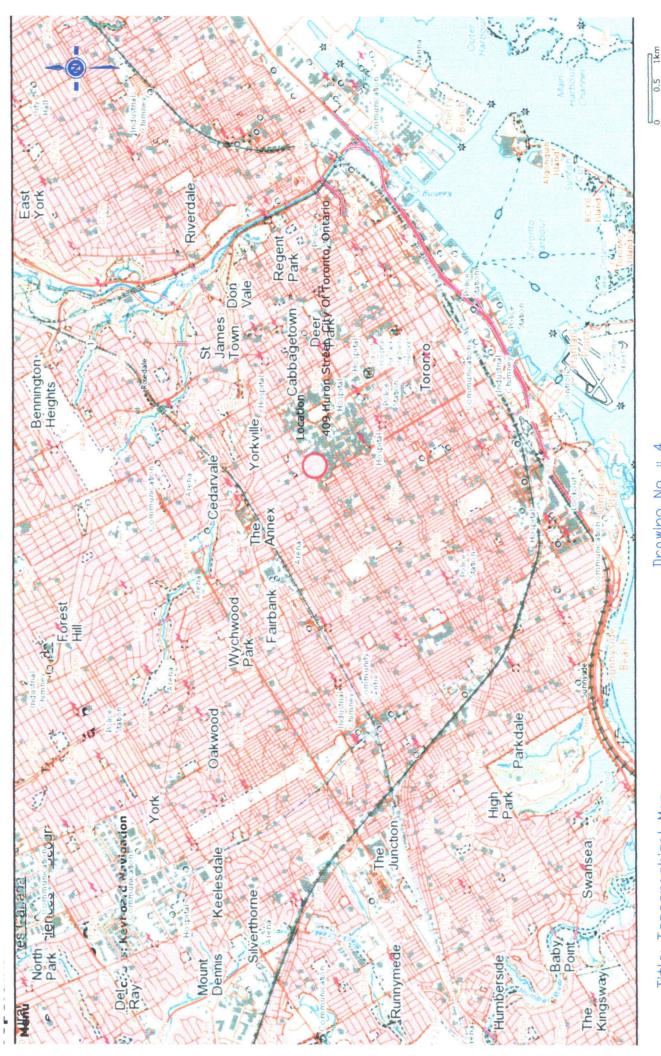
ln(R0 + rs)/rs


Dewatering

	Pre-construction	Post-construction
K (m/s)	1.1 x 10-8	1.1x 10-8
H (m)	4.21	3.21
h (m)	0	0
dH (m)	4.21	3.21
R0 (m)	1.32	0.96
rs (m)	14.6	14.6
rs +R0 (m)	15.92	15.56
Q (m^3/ sec.)	7.07 x 10-6	5.587 x 10-6
Q (m^3/ day)	0.61	0.48
Qf (m^3/ day)	0.92	0.72
Q rain (m^3/day)	16.65	0
Qf rain (m^3/day)	24.97	0
Q total (m^3 /day)	25.89	0.72


Reference: J.Patrick Powers, Construction Dewatering and Groundwater Control, 2007


Drawings


Site Location Plan
Borehole and Section Location Plan
Sections A-A
Topographical Map

Drawing No. :: 1 Date: December 17, 2018 Scale: As shown

Title: Topographical Map Project No.: Ma002568c Project: Proposed Student Focusing Housing Location: 409 Huron Street, Toronto

Drawing No. :: 4 Date: December 17, 2018 Scale: As shown